Solid-state lighting is a rapidly evolving, emerging technology whose efficiency of conversion of electricity to visible white light is likely to approach 50% within the next several years. This efficiency is significantly higher than that of traditional lighting technologies, giving solid-state lighting the potential to enable significant reduction in the rate of world energy consumption. Further, there is no fundamental physical reason why efficiencies well beyond 50% could not be achieved, which could enable even more significant reduction in world energy usage. In this article, we discuss in some detail: (a) the several approaches to inorganic solid-state lighting that could conceivably achieve "ultra-high," 70% or greater, efficiency, and (b) the significant research questions and challenges that would need to be addressed if one or more of these approaches were to be realized.
High power light emitting diodes (LEDs) continue to increase in output flux with the best III‐nitride based devices today emitting over 150 lm of white, cyan, or green light. The key design features of such products will be covered with special emphasis on power packaging, flip‐chip device design, and phosphor coating technology. The high‐flux performance of these devices is enabling many new applications for LEDs. Two of the most interesting of these applications are LCD display backlighting and vehicle forward lighting. The advantages of LEDs over competing lighting technologies will be covered in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.