Abstract. Because of the vague distinction between urban and rural areas, the Local Climate Zone (LCZ) scheme was developed to better analyze the effect of Urban Heat Island. To map the LCZs in a city, the World Urban Database and Portal Tool is used as conventional method. However, this requires the assignment of training areas for each LCZ, which entails local knowledge of the area and may introduce errors, as distinction between LCZ types through visual inspection is inconclusive. This paper aims to develop a methodology and GIS tool to enhance and automate the mapping of LCZs using seven LCZ properties (sky view factor, building surface fraction, pervious surface fraction, impervious surface fraction, building height, roughness length, and surface albedo), and apply it in Quezon City, Philippines which comprises varying land use and land cover. Fuzzy Logic was used to determine the membership percentage of 100 m cells to an LCZ type based on these properties. Cellular Automata was implemented using Python to derive the LCZ map from the fuzzy layers. Results show that seven out of ten built-up LCZs and five out of seven land cover LCZs were identified. Through visual inspection on a basemap, the mapped LCZs was confirmed to match with the features of the city. Land Surface Temperature (LST) derived from Landsat 8 showed that each LCZ type displayed temperatures consistent with those observed from literature. The developed methodology and tool is ready to be used in other cities as long as the input layers are generated.
Abstract. This study entails generation of empirical ordinary least squares regression models to estimate water parameters. It uses remote sensing for environmental monitoring of Pasig River located in the Philippines. This uses measurements of primary water quality (WQ) parameters defined on Department of Environment and Natural Resources Administrative Order 2016-08 recorded on the Pasig River Unified Monitoring Stations (PRUMS) report from January to June of 2019. Sentinel-2 images are utilized to estimate biological oxygen demand (BOD), Chloride, Color, Dissolved Oxygen (DO), Fecal Coliform, Nitrate, pH, Phosphate, Temperature, and Total suspended solids (TSS). Feature generation involved calculation of different band reflectances from the satellite image. Exhaustive feature selection through application of a Pearson Correlation threshold was applied to limit number of independent variables. The box-cox transformations of water quality parameters (except for Temperature) were used as dependent variables and the selected features are used as dependent variables for the ordinary least squares regression model. The root mean square error (RMSE) values for the models which are computed using the k-fold cross validation technique showed outliers, especially for the TSS model (>547000 mg/L), which made its average negative RMSE so large. Tests for multicollinearity, autocorrelation, and homoscedasticity indicated problems in models created. However, normality of residuals indicates that models allow us to roughly estimate water quality for the river as a whole with the advantages of remote sensing, enabling a better perspective for its spatial distribution.
Abstract. Cities are consistently motivated to come up with technology-driven solutions that aim to reduce the negative impacts of rapid urbanization. This paper explores open-source software as a platform in visualizing and developing a digital twin, which aids in mitigating the problem by running simulations and generating potential improvements through generated insights. The four essential components examined to develop the methodology are: (1) Visualization of Digital Model; (2) Identification of User Interface and Data Management Requirements; (3) User Interface Set-up and Configuration; and (4) Analysis and Simulations. Different tools for visualizing the city such as Unity3D, QGIS2threejs, and TerriaMap were explored and compared. Though Unity3D and QGIS2threejs can visualize 3D city models, TerriaMap was favored for its capability to visualize large areas in 3D and to create customizable user interfaces. User interface components were identified as well as handling and processing geospatial datasets. For the analysis and simulations, the Land Surface Temperature hotspot detection was performed and integrated into the system to demonstrate its potential to include other simulations in the future.
Abstract. Modelling of land surface temperature (LST) is conducted to be able to explain the spatial and temporal variations of LST using a set of explanatory variables. LST in a previous study was modelled as a linear function of vegetation cover and built up cover as quantified by the normalized difference vegetation index (NDVI) and the normalized difference built-up index (NDBI), respectively, and other variables, namely, albedo, solar radiation (SR), surface area-volume ratio (SVR), and skyview factor (SVF). SVF requires a digital surface model of sufficient resolution while SVR computation needs 3D volumetric features representing buildings as input. These inputs are typically not readily available. In addition, NDVI and NDBI do not fully describe the spatial variability of vegetation and built-up cover within an LST pixel. In this study, PlanetScope images (3m resolution) were processed to provide soil-adjusted vegetation index (SAVI) and VgNIR Built-up Index (VgNIR-BI) layers. The following gray level co-occurrence matrices (GLCM) were generated from SAVI and VgNIR-BI: Mean, Variance, Homogeneity, Contrast, Dissimilarity, Entropy, Second Moment, and Correlation. Random Forest regression was run for several cases with different combinations of GLCM features and non-GLCM variables. Using GLCM features alone yielded less satisfactory models. However, the use of additional GLCM features in combination with other variables resulted in lower MSE and a slight increase in R2. Considering NDBI, NDVI, SAVI_GLCM_contrast, VgNIR-BI_GLCM_contrast, VgNIR-BI_GLCM_dissimilarity, and SAVI_GLCM_contrast only, the RF model yielded an MSE=1.657 and validation R2=0.822. While this 6-variable model’s performance is slightly less, the need for DSM and 3D building models which are necessary for the generation of SVF and SVR layers is eliminated. Exploratory regression (ER) was also conducted. The best 6-variable ER model (Adj. R2=0.79) consists of SVR, NDBI, NDVI, SAVI_GLCM_second_moment, VgNIR-BI_GLCM_mean, and VgNIR-BI_GLCM_entropy. In comparison, OLS regression using the 6 non-GLCM variables yielded an Adj. R2=0.691. The results of RFR and ER both indicate the value of GLCM features in providing valuable information to the models of LST. LST is best described through a combination of GLCM features describing relatively homogenous areas (i.e., dominant land cover or low-frequency areas) and the more heterogenous areas (i.e., edges or high-frequency areas) and non-GLCM variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.