ABSTRACT:Many studies have been conducted in the estimation of forest above ground biomass (AGB) using features from synthetic aperture radar (SAR). Specifically, L-band ALOS/PALSAR (wavelength ~23cm) data is often used. However, few studies have been made on the use of shorter wavelengths (e.g., C-band, 3.75 cm to 7.5 cm) for forest mapping especially in tropical forests since higher attenuation is observed for volumetric objects where energy propagated is absorbed. This study aims to model AGB estimates of mangrove forest using information derived from Sentinel-1 C-band SAR data. Combinations of polarisations (VV, VH), its derivatives, grey level cooccurrence matrix (GLCM), and its principal components were used as features for modelling AGB. Five models were tested with varying combinations of features; a) sigma nought polarisations and its derivatives; b) GLCM textures; c) the first five principal components; d) combination of models a -c; and e) the identified important features by Random Forest variable importance algorithm. Random Forest was used as regressor to compute for the AGB estimates to avoid over fitting caused by the introduction of too many features in the model. Model e obtained the highest r 2 of 0.79 and an RMSE of 0.44 Mg using only four features, namely, ˚ GLCM variance, ˚ GLCM contrast, PC1, and PC2. This study shows that Sentinel-1 C-band SAR data could be used to produce acceptable AGB estimates in mangrove forest to compensate for the unavailability of longer wavelength SAR.
Abstract. This study entails generation of empirical ordinary least squares regression models to estimate water parameters. It uses remote sensing for environmental monitoring of Pasig River located in the Philippines. This uses measurements of primary water quality (WQ) parameters defined on Department of Environment and Natural Resources Administrative Order 2016-08 recorded on the Pasig River Unified Monitoring Stations (PRUMS) report from January to June of 2019. Sentinel-2 images are utilized to estimate biological oxygen demand (BOD), Chloride, Color, Dissolved Oxygen (DO), Fecal Coliform, Nitrate, pH, Phosphate, Temperature, and Total suspended solids (TSS). Feature generation involved calculation of different band reflectances from the satellite image. Exhaustive feature selection through application of a Pearson Correlation threshold was applied to limit number of independent variables. The box-cox transformations of water quality parameters (except for Temperature) were used as dependent variables and the selected features are used as dependent variables for the ordinary least squares regression model. The root mean square error (RMSE) values for the models which are computed using the k-fold cross validation technique showed outliers, especially for the TSS model (>547000 mg/L), which made its average negative RMSE so large. Tests for multicollinearity, autocorrelation, and homoscedasticity indicated problems in models created. However, normality of residuals indicates that models allow us to roughly estimate water quality for the river as a whole with the advantages of remote sensing, enabling a better perspective for its spatial distribution.
ABSTRACT:The generation of high resolution canopy height model (CHM) from LiDAR makes it possible to delineate individual tree crown by means of a fully-automated method using the CHM's curvature through its slope. The local maxima are obtained by taking the maximum raster value in a 3 m x 3 m cell. These values are assumed as tree tops and therefore considered as individual trees. Based on the assumptions, thiessen polygons were generated to serve as buffers for the canopy extent. The negative profile curvature is then measured from the slope of the CHM. The results show that the aggregated points from a negative profile curvature raster provide the most realistic crown shape. The absence of field data regarding tree crown dimensions require accurate visual assessment after the appended delineated tree crown polygon was superimposed to the hill shaded CHM.
ABSTRACT:Diameter-at-Breast-Height Estimation is a prerequisite in various allometric equations estimating important forestry indices like stem volume, basal area, biomass and carbon stock. LiDAR Technology has a means of directly obtaining different forest parameters, except DBH, from the behavior and characteristics of point cloud unique in different forest classes. Extensive tree inventory was done on a two-hectare established sample plot in Mt. Makiling, Laguna for a natural growth forest. Coordinates, height, and canopy cover were measured and types of species were identified to compare to LiDAR derivatives. Multiple linear regression was used to get LiDAR-derived DBH by integrating field-derived DBH and 27 LiDAR-derived parameters at 20m, 10m, and 5m grid resolutions. To know the best combination of parameters in DBH Estimation, all possible combinations of parameters were generated and automated using python scripts and additional regression related libraries such as Numpy, Scipy, and Scikit learn were used. The combination that yields the highest r-squared or coefficient of determination and lowest AIC (Akaike's Information Criterion) and BIC (Bayesian Information Criterion) was determined to be the best equation. The equation is at its best using 11 parameters at 10m-grid size and at of 0.604 r-squared, 154.04 AIC and 175.08 BIC. Combination of parameters may differ among forest classes for further studies. Additional statistical tests can be supplemented to help determine the correlation among parameters such as KaiserMeyer-Olkin (KMO) Coefficient and the Barlett's Test for Spherecity (BTS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.