In the last decades, 3D city models appear to have been predominantly used for visualisation; however, today they are being increasingly employed in a number of domains and for a large range of tasks beyond visualisation. In this paper, we seek to understand and document the state of the art regarding the utilisation of 3D city models across multiple domains based on a comprehensive literature study including hundreds of research papers, technical reports and online resources. A challenge in a study such as ours is that the ways in which 3D city models are used cannot be readily listed due to fuzziness, terminological ambiguity, unclear added-value of 3D geoinformation in some instances, and absence of technical information. To address this challenge, we delineate a hierarchical terminology (spatial operations, use cases, applications), and develop a theoretical reasoning to segment and categorise the diverse uses of 3D city models. Following this framework, we provide a list of identified use cases of 3D city models (with a description of each), and their applications. Our study demonstrates that 3D city models are employed in at least 29 use cases that are a part of more than 100 applications. The classified inventory could be useful for scientists as well as stakeholders in the geospatial industry, such as companies and national mapping agencies, as it may serve as a reference document to better position their operations, design product portfolios, and to better understand the market.
The level of detail (LOD) concept of the OGC standard CityGML 2.0 is intended to differentiate multi-scale representations of semantic 3D city models. The concept is in practice principally used to indicate the geometric detail of a model, primarily of buildings. Despite the popularity and the general acceptance of this categorisation, we argue in this paper that from a geometric point of view the five LODs are insufficient and that their specification is ambiguous.We solve these shortcomings with a better definition of LODs and their refinement. Hereby we present a refined set of 16 LODs focused on the grade of the exterior geometry of buildings, which provide a stricter specification and allow less modelling freedom. This series is a result of an exhaustive research into currently available 3D city models, production workflows, and capabilities of acquisition techniques. Our specification also includes two hybrid models that reflect common acquisition practices. The new LODs are in line with the LODs of CityGML 2.0, and are intended to supplement, rather than replace the geometric part of the current specification. While in our paper we focus on the geometric aspect of the models, our specification is compatible with different levels of semantic granularity. Furthermore, the improved LODs can be considered format-agnostic.Among other benefits, the refined specification could be useful for companies for a better definition of their product portfolios, and for researchers to specify data requirements when presenting use cases of 3D city models. We support our refined LODs with experiments, proving their uniqueness by showing that each yields a different result in a 3D spatial operation.Keywords: Level of detail; 3D city modelling; 3D GIS; 3D building models; CityGML; Scale Highlights• CityGML LODs are an industry standard for conveying the grade of 3D city models.• The 5 LODs are not defined precisely, and they are not sufficient for this purpose.• We present a refined series of 16 LODs that overcomes these issues.
Although the international standard CityGML has five levels of detail (LODs), the vast majority of available models are the coarse ones (up to LOD2, ie block-shaped buildings with roofs). LOD3 and LOD4 models, which contain architectural details such as balconies, windows and rooms, nearly exist because, unlike coarser LODs, their construction requires several datasets that must be acquired with different technologies, and often extensive manual work is needed. We investigate in this paper an alternative to obtaining CityGML LOD3 models: the automatic conversion from already existing architectural models (stored in the IFC format). Existing conversion algorithms mostly focus on the semantic mappings and convert all the geometries, which yields CityGML models having poor usability in practice (spatial analysis is for instance not possible). We present a conversion algorithm that accurately applies the correct semantics from IFC models and that constructs valid CityGML LOD3 buildings by performing a series of geometric operations in 3D. We have implemented our algorithm and we demonstrate its effectiveness with several real-world datasets. We also propose specific improvements to both standards to foster their integration in the future.
The level of detail in 3D city modelling, despite its usefulness and importance, is still an ambiguous and undefined term. It is used for the communication of how thoroughly real-world features have been acquired and modelled, as we demonstrate in this paper. Its definitions vary greatly between practitioners, standards and institutions. We fundamentally discuss the concept, and we provide a formal and consistent framework to define discrete and continuous levels of detail (LODs), by determining six metrics that constitute it, and by discussing their quantification and their relations. The resulting LODs are discretisations of functions of metrics that can be specified in an acquisition-modelling specification form that we introduce. The advantages of this approach over existing paradigms are formalisation, consistency, continuity, and finer specification of LODs. As an example of the realisation of the framework, we derive a series of 10 discrete LODs. We give a proposal for the integration of the framework within the OGC standard CityGML (through the Application Domain Extension).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.