Data taken in stereo mode by the High Resolution Fly's Eye (HiRes) air fluorescence experiment are analyzed to search for correlations between the arrival directions of ultrahigh-energy cosmic rays with the positions of BL Lacertae objects. Several previous claims of significant correlations between BL Lac objects and cosmic rays observed by other experiments are tested. These claims are not supported by the HiRes data. However, we verify a recent analysis of correlations between HiRes events and a subset of confirmed BL Lac objects from the 10th Veron Catalog, and we study this correlation in detail. Due to the a posteriori nature of the search, the significance level cannot be reliably estimated and the correlation must be tested independently before any claim can be made. We identify the precise hypotheses that will be tested with statistically independent data.
We have measured the cosmic ray spectrum above 10 17.2 eV using the two air fluorescence detectors of the High Resolution Fly's Eye observatory operating in monocular mode. We describe the detector, photo-tube and atmospheric calibrations, as well as the analysis techniques for the two detectors. We fit the spectrum to a model consisting of galactic and extra-galactic sources.
Air-fluorescence detectors such as the High Resolution Fly's Eye ( HiRes) detector are very sensitive to upwardgoing, Earth-skimming ultra-high-energy electron-neutrino-induced showers. This is due to the relatively large interaction cross sections of these high-energy neutrinos and to the Landau-Pomeranchuk-Migdal (LPM) effect. The LPM effect causes a significant decrease in the cross sections for bremsstrahlung and pair production, allowing chargedcurrent electron-neutrino-induced showers occurring deep in the Earth's crust to be detectable as they exit the Earth into the atmosphere. A search for upward-going neutrino-induced showers in the HiRes-II monocular data set has yielded a null result. From an LPM calculation of the energy spectrum of charged particles as a function of primary energy and depth for electron-induced showers in rock, we calculate the shape of the resulting profile of these showers in air. We describe a full detector Monte Carlo simulation to determine the detector response to upward-going electronneutrino-induced cascades and present an upper limit on the flux of electron neutrinos. Subject headingg s: acceleration of particles -cosmic rays -large-scale structure of universe -neutrinos Online material: color figure
The MEGA experiment, which searched for the muon-and electron-number violating decay ϩ →e ϩ ␥, is described. The spectrometer system, the calibrations, the data taking procedures, the data analysis, and the sensitivity of the experiment are discussed. The most stringent upper limit on the branching ratio, B( ϩ →e ϩ ␥)Ͻ1.2ϫ10 Ϫ11 with 90% confidence, is derived from a likelihood analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.