The neural cell adhesion molecule L1 is a multidomain protein that plays important roles in cell adhesion, migration, and neurite outgrowth. To analyze structure-function relationships of L1 in neurite outgrowth and cell body adhesion, we have expressed and purified a set of different fragments of the extracellular part of this glycoprotein in CHO cells and in Escherichia coli. When neurite outgrowth from small cerebellar neurons was measured on substrate-coated L1 or L1 fragments, neurite outgrowth was promoted by the immunoglobulin-like domains I-II, III-IV, and V-VI, and by the fibronectin type III homologous repeats 1-2, while the fibronectin type III homologous repeats 3-5 were ineffective. In contrast, cell bodies of small cerebellar neurons adhered mostly to the immunoglobulin-like domains I-II and V-VI, and to the fibronectin type III homologous repeats 3-5, but less to the immunoglobulin-like domains III-IV and fibronectin type III homologous repeats 1-2. In both assays, the neuronal cell surface receptor for all active protein fragments was identified as L1. No significant differences in functional activities were found between fragments with and without carbohydrate structures. These findings indicate that L1 uses several domains for homophilic interactions overlapping for the two functions analyzed here, but also showing some regional specialization. Furthermore, we show that a homophilic molecule uses several domains in one function, with neurite outgrowth requiring more domains than adhesion for maximal activity.
Because of the importance of collagens in mediating cell-substrate interactions and the association of collagens with neural recognition molecules in the peripheral nervous system, the ability of neural recognition molecules to modify the substrate properties of collagens, in particular collagen type I, for cell adhesion was determined. Two cell lines, the N2A neuroblastoma and PC12 pheochromocytoma, were investigated for their capacity to adhere to different collagen types in the absence or presence of several neural recognition molecules. Adhesion of N2A or PC12 cells and membrane vesicles from PC12 cells to collagen type I was reduced when the collagen had been preincubated prior to its application as substrate with the extracellular domain of myelin-associated glycoprotein (s-MAG) or, as control, fibroblast tenascin-C (F-tenascin). In mixture with other collagen types, s-MAG was only able to reduce the adhesiveness of collagen types III and V, but not of collagen types II and IV. F-tenascin reduced the adhesiveness of all collagen types tested. In contrast to F-tenascin, s-MAG had to be present during fibrillogenesis to exert its effect, indicating that it must be coassembled into the collagen fibril to block the binding site. Cell adhesion to collagen type I was dependent on Mg2+ or Mn2+ and inhibited by a monoclonal antibody to the alpha 1 integrin subunit. The combined observations indicate that s-MAG and F-tenascin interfere with cell binding, most probably by modifying the integrin binding site, and that the two molecules act by different mechanisms, both leading to reduction of adhesion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.