The neural cell adhesion molecule L1 is a multidomain protein that plays important roles in cell adhesion, migration, and neurite outgrowth. To analyze structure-function relationships of L1 in neurite outgrowth and cell body adhesion, we have expressed and purified a set of different fragments of the extracellular part of this glycoprotein in CHO cells and in Escherichia coli. When neurite outgrowth from small cerebellar neurons was measured on substrate-coated L1 or L1 fragments, neurite outgrowth was promoted by the immunoglobulin-like domains I-II, III-IV, and V-VI, and by the fibronectin type III homologous repeats 1-2, while the fibronectin type III homologous repeats 3-5 were ineffective. In contrast, cell bodies of small cerebellar neurons adhered mostly to the immunoglobulin-like domains I-II and V-VI, and to the fibronectin type III homologous repeats 3-5, but less to the immunoglobulin-like domains III-IV and fibronectin type III homologous repeats 1-2. In both assays, the neuronal cell surface receptor for all active protein fragments was identified as L1. No significant differences in functional activities were found between fragments with and without carbohydrate structures. These findings indicate that L1 uses several domains for homophilic interactions overlapping for the two functions analyzed here, but also showing some regional specialization. Furthermore, we show that a homophilic molecule uses several domains in one function, with neurite outgrowth requiring more domains than adhesion for maximal activity.
To determine the domains of the neural cell adhesion molecule L1 involved in neurite outgrowth, we have generated monoclonal antibodies against L1 and investigated their effects on neurite outgrowth of small cerebellar neurons in culture. When the 10 antibodies were coated as substrate, only antibody 557.B6, which recognizes an epitope represented by a synthetic peptide comprising amino acids 818 to 832 at the border between the fibronectin type III homologous repeats 2 and 3, was as efficacious as L1 in promoting neurite outgrowth, increasing intracellular levels of Ca2+, and stimulating the turnover of inositol phosphates. These findings suggest that neurite outgrowth and changes in these second messengers are correlated. Such a correlation was confirmed by the ability of Ca2+ channel antagonists and pertussis toxin to inhibit neurite outgrowth on L1 and antibody 557.B6. These observations indicate for the first time a distinct site on cell surface-bound L1 as a prominent signal-transducing domain through which the recognition events appear to be funneled to trigger neurite outgrowth, increase turnover of inositol phosphates, and elevate intracellular levels of Ca2+.
The neural cell adhesion molecule L1 is a multidomain protein that plays important roles in cell adhesion, migration, and neurite outgrowth. It can interact with itself by a self-binding, i.e., homophilic adhesion mechanism (Kadmon et al.: J Cell Biol 110: 193-208, 1990a). To determine the domains of L1 involved in homophilic binding, we have generated protein fragments of L1 in a prokaryotic and a eukaryotic expression system and used these covalently coupled to fluorescent microspheres to quantify aggregation between them by cytofluorometric analysis. Protein fragments containing the first and second Ig-like domains and the third fibronectin type III homologous repeat showed avid self-binding. Ig-like domains III and IV also showed some self-binding, whereas Ig-like domains V and VI and fibronectin type III homologous repeats 1 and 2 as well as 4 and 5 were less or not active. Binding between different domains was also observed: fibronectin type III homologous repeats 4 and 5 interacted with Ig-like domains I and II, and fibronectin type III homologous repeats 3-5 interacted with all Ig-like domains. These results were confirmed by experiments testing the binding of fragment-conjugated microspheres to substrate-coated L1 or to cell surface-expressed L1 on cultured neurons. Binding of L1 to itself was interfered with by all protein fragments tested, suggesting that also less avidly binding domains of L1 contribute to homophilic binding. These observations indicate prominent functional roles of both Ig-like domains and fibronectin type III homologous repeats in homophilic binding of L1.
Simian virus 40 T antigen is specifically targeted to the nucleus by the signal Pro-Lys-Lys-128-Lys-Arg-LysVal. We have previously described the isolation of a simian virus 40 T-antigen mutant, 676FS, which retains a wild-type nuclear localization signal but fails to accumulate properly in the nucleus and interferes with the nuclear localization of heterologous proteins. Here we report that the hydrophobic carboxy-terminal sequence novel to 676FS T antigen overrides the nuclear localization signal if fused to other proteins, thereby anchoring the proteins in the cytoplasm. We discuss possible mechanisms by which missorting of such a fusion protein could interfere with the nuclear transport of heterologous proteins. (4,20,27,34). While it was originally assumed that smaller nuclear proteins (<20 to 30 kDa) (14) would behave like small inert macromolecules and diffuse passively through the aqueous channel of the nuclear pore complex, a recent report by Breeuwar and Goldfarb (6) demonstrated that smaller nuclear proteins also use a receptor-facilitated import pathway. NLS-binding proteins have been detected by various assays in both nuclear and cytoplasmic compartments (1,33,54,59; for reviews, see references 17 and 52), and at least one cytoplasmic proteinaceous factor has been shown recently to be required for binding of nuclear proteins to the nuclear envelope in a cell-free assay (38)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.