SUMMARYThe force analysis of parallel manipulators is one of the important issues for mechanical design and control, but it is quite difficult often because of the excessive unknowns. A new approach using screw theory for a 3-RPS parallel mechanism is proposed in this paper. It is able to markedly reduce the number of unknowns and even make the number of simultaneous equations to solve not more than six each time, which may be called force decoupling. With this method, first the main-pair reactions need to be solved for, and then, the active forces and constraint reactions of all other kinematic pairs can be simultaneously obtained by analyzing the equilibrium of each body one by one. Finally, a numerical example and a discussion are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.