The efficacy of a commercial source of mannanoligosacharides (BM), organic zinc (BP), or their combination to enhance performance, gastrointestinal health, and immune response in weaned pigs was evaluated. A total of 128 piglets, weaned at 20 +/- 2 d, were housed in 32 pens. Animals received 1 of 4 dietary treatments: a control diet (CT) to which 0.2% of BM, 80 mg/kg of Zn as BP, or both additives (BMP) were added. The experiment lasted for 5 wk including a prestarter period of 2 wk and a starter period of 3 wk. Body weight was recorded and daily feed intake was calculated. Fecal consistency was monitored for the first 21 d. After 2 wk, 32 animals were killed, digesta samples from the stomach, ileum, and cecum were collected, and pH and the short-chain fatty acid profile were determined. Microbiological counts for enterobacteria and lactobacilli were evaluated using quantitative PCR. Histological parameters in the jejunum and immunoglobulin concentrations in serum and ileal digesta were also measured. Both additives improved G:F during the starter period (0.63, 0.69, 0.67, and 0.68 for CT, BM, BP, and BMP, respectively; P < 0.04). Mean fecal score values for the first 21 d were improved by BM and BP, showing decreased values compared with the CT diet (1.22, 0.89, 0.87, and 1.06 for CT, BM, BP, and BMP, respectively; P = 0.002). The addition of BM decreased enterobacteria counts in the jejunum (9.13, 8.05, 8.87, and 7.89 log 16S rRNA gene copies/g of matter for CT, BM, BP, and BMP, respectively; P = 0.05). Empty ileal weight, defined as the segment including the continuous Peyer's patch, tended (P = 0.08) to increase with BP treatment (8.9, 9.6, 11.9, and 10.3 g/kg of BW for CT, BM, BP, and BMP, respectively). Crypt depths in the jejunum were lower in animals fed the combination of the additives (BPM) compared with those fed the control diet (281 vs. 235; P < 0.03). No significant differences were registered in pH, short-chain fatty acids, or serum and ileal immunoglobulin concentrations. The results suggest that the use of BM or BP can improve the efficiency of gain during the starter period.
To study the interaction between the levels of protein and fiber on the productive performance and health status of piglets, ninety-six 35-d-old piglets (9.11 +/- 0.60 kg of BW) were placed in 32 pens of 3 animals each and allotted to 4 dietary treatments for 21 d. The 4 diets were based on rice, dairy products, and soybean meal in a 2 x 2 factorial arrangement of treatments, with 2 levels of CP (15.4 vs. 19.4%, as-fed basis) and 2 levels of dietary fiber [DF; low fiber (LF) 5.3% NDF and high fiber (HF) 7.15% NDF, as-fed basis]. The HF diet was developed by supplementing the basal diet with 40 g/kg of wheat bran and 20 g/kg of sugar beet pulp. Animal performance was obtained weekly with samples of feces collected for microbiology on the first and the last experimental day and scored from 1 (liquid) to 4 (hard). On the last day, 1 pig from each pen was sampled for blood analyses of the acute-phase protein, major acute-phase protein of pigs (PigMap) and subsequently killed to register the digestive tract weight (including contents) and colon histology. Pigs fed the HF diets had greater ADG (390 vs. 457 g; P < or = 0.001) and large intestine weight (4.4 vs. 5.4% of BW; P < or = 0.05). This coincided with a greater (P < or = 0.05) short-chain fatty acid concentration (especially of acetic and butyric acids), a decrease in Escherichia coli counts (7.77 vs. 6.86 log of cfu/g of feces, P < or = 0.05), and an increase in the ratio of lactobacilli:enterobacteria (0.76 vs. 1.37, P < or = 0.05). However, CP level did not modify the productive performance, but 20% CP increased P < or = 0.05) the relative weight (% of BW) of the small (6.5 vs. 7.7) and large intestine (3.8 vs. 4.3). In the large bowel, the 20% CP diet increased the numbers of goblet cells (4.6 vs. 5.4/100 microm; P< or = 0.05) and reduced the numbers of intraepithelial lymphocytes (1.8 vs. 1.3/100 microm; P < or = 0.05). In relation to health status, increasing DF was dependent of the dietary CP content. Supplementing the 16% CP diet with DF reduced the fecal score and increased the antibiotics interventions, whereas the opposite was the case in the 20% CP diet. Pigs fed the 20% CP diet showed decreased (P < or = 0.05) PigMap concentrations than pigs fed 16% CP diets. As a whole, CP showed major effects on the gastrointestinal weight and gut barrier integrity, whereas DF increased the productive performance and promoted major changes in the microbial colonization and fermentation variables.
The physiological role of the gastrointestinal microbiota has become an important subject of nutrition research in pigs in the past years, and the importance of intestinal microbial activity in the etiology of disease is doubtless. This review summarizes the recent knowledge related to the microbial ecology of protein fermentation and the appearance of protein-derived metabolites along the pig intestine. The amount of fermentable protein depends on factors such as dietary protein concentration, protein digestibility due to secondary or tertiary structure, the interaction with dietary compounds or anti-nutritional factors, and the secretion of endogenous proteins into the gut lumen. High protein diets increase the luminal concentrations and epithelial exposure to putatively toxic metabolites and increase the risk for post-weaning diarrhea, but the mechanisms are not yet clarified. Although the use of fermentable carbohydrates to reduce harmful protein-derived metabolites in pigs is well-established, recent studies suggest that the inclusion of fermentable carbohydrates into diets with low protein digestibility or high dietary protein level may not ameliorate all negative effects with regard to epithelial response. Based on the current knowledge, the use of diets with low levels of high-quality protein may help to reduce the risk for intestinal disease in young pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.