Saturated red light emission from organic light emitting diodes is less common than emission in the green or the blue. Most organic red light emitting devices are based on rare earth complexes, mainly europium, which are known to exhibit stability problems. The present article describes new diodes made of indium tin oxide-coated glass/triphenylene hexaether/perylene tetraester/aluminum. The band diagram was determined by ultraviolet photoemission spectroscopy, cyclic voltammetry, scanning tunneling microscopy, and absorbance measurements. The interfaces between electrodes and organic layers were investigated by x-ray photoelectron spectroscopy. The current–voltage and luminance–voltage characteristics are very reproducible from device to device, with an emission peak at 620 nm and a full width at half maximum of 80 nm, a current rectification ratio of about 30, I∼V2 at low voltages and I∼Lum∼V6 at higher voltages.
Mechanical property changes, thermal stability, and water absorption capacity of poly(vinyl chloride) (PVC)/sisal fiber composites were assessed with respect to the effect of maleic anhydride chemical treatments of the sisal fiber, for five different sisal fiber contents, varying from 0 to 30% by weight in the composite. The composites prepared with the untreated sisal exhibited higher tensile modulus and hardness than the unloaded resin, while elongation and tensile strength were reduced. The deterioration in the mechanical properties of PVC blended with sisal fiber is attributed to the presence of moisture, interfacial defects at the fiber and polymer interface, and fiber dispersion in the PVC matrix. The amount of absorbed water is a function of the amount of fiber in the composite (F0 ¼ 0 phr, F5 ¼ 0.77 phr, and F20 ¼ 4.83 phr). The comparison of the results of characterization of F5, F20, and F30 formulations prepared with the untreated fibers and the treated ones showed a reduction in absorbed water after the chemical treatment of fiber with maleic anhydride (F0 ¼ 0 phr, F5 ¼ 0.28 phr, and F20 ¼ 2.99 phr), thus improving the mechanical properties of composites prepared with the treated sisal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.