Capsule summaryThe SOUTHTRAC-GW airborne mission explored the dynamics of gravity waves in the region of the Southern Andes and Antarctic Peninsula during the extraordinary southern hemisphere SSW of September 2019.
The semidiurnal lunar and solar tides obtained from meteor radar measurements spanning from 2009 to 2013 observed at Davis (69°S) and Rio Grande (54°S) are presented and compared to the Northern Hemisphere ones at Andenes (69°N) and Juliusruh (54°N). Mean tidal differences for both intrahemispheric and interhemispheric scenarios are analyzed. Tidal behavior is also compared against numerical simulations during 2009 and 2013 sudden stratospheric warming (SSW) time periods. Possible influences in the Southern Hemisphere from the local stratosphere are also investigated using Modern Era Retrospective analysis for Research and Applications, version 2 (MERRA 2) data sets. The main features of the mean zonal wind are similar in both hemispheres, i.e., stronger amplitudes over midlatitude locations, eastward winds during winter and westward below 90 km with eastward higher up during corresponding summer times. On the other hand, the semidiurnal solar tides observed in the Southern Hemisphere show clear differences when compared to the Northern Hemisphere and between middle‐ and high‐latitude locations at the same hemisphere. These differences are even larger for the semidiurnal lunar tide, which shows stronger amplitudes from October to March and March to October, over Davis and Rio Grande, respectively. Our results indicate that the lunar tides over the Southern Hemisphere midlatitudes are more prone to react to the Northern Hemisphere stratospheric polar vortex influences, in agreement with numerical simulations, particularly for the time of the 2013 SSW.
• First observations of MLT dynamics over one of the most dynamically active regions in the world • Estimates of mean horizontal winds and their gradients are possible, thanks to the multistatic configuration. • Mean momentum fluxes are estimated with vertical velocity estimates free of horizontal divergence contamination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.