This paper describes a fundamental challenge when using silicon oxide nanochannels for analytical systems, namely the occurrence of a strong proton release or proton uptake from the walls in any transient situation such as channel filling. Experimentally, when fluorescein solutions were introduced into silicon oxide nanochannels through capillary pressure, a distinct bisection of the fluorescence was observed, the zone of the fluid near the entrance fluoresced, while the zone near the meniscus, was dark. The ratio between the zones was found to be constant in time and to depend on ionic strength, pH, and the presence of a buffer and its characteristics. Theoretically, using the Gouy-Chapman-Stern model of the electrochemical double layer, we demonstrate that this phenomenon can be effectively modeled as a titration of the solution by protons released from silanol groups on the walls, as a function of the pH and ionic strength of the introduced solution. The results demonstrate the dominant influence of the surface on the fluid composition in nanofluidic experiments, in transient situations such as filling, and changes in solvent properties such as the pH or ionic strength. The implications of these fundamental properties of silicon oxide nanochannels are important for analytical strategies and in particular the analysis of complex biological samples.
This paper presents the results of active adaptation of sensor sensitivity. By applying a DC-bias voltage to the sensing electrodes of a cricket inspired artificial hair sensor the effective spring stiffness can be adapted resulting in a reduced resonance frequency and increased sensitivity. An array of flow sensors was actuated using electrical and acoustical signals at different values of the DC-bias voltage. Characterization was done using a scanning laser vibrometer. Both resonance frequency versus applied DC-bias voltage and deflection-amplitude versus DC-bias voltage behave well in accordance to theory and show that adaptation by DC-biasing can be used for frequency focusing and increasing sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.