Aircraft component manufacturing sector is looking for high precision machining in aircraft components. The present work explores the operability of green manufacturing of Nimonic C263 using dry turning. Nimonic C263 is tough to turn owing to its inherent quality like low conductivity and more work hardening. Therefore, in order to improve this machined surface/integrity, the controlling factors were optimized based on desirability approach for minimum of surface roughness and flank wear during turning of this alloy using CBN insert. L27 orthogonal array was chosen to carry out the experiment. The effects of controlling factors, such as cutting speed (
V
), feed rate (
S
), and cut penetration/depth of cut (
a
p
) on the outputs, were also explored. The feed rate was a major impact to affect surface finish and flank wear. The average error percentage between the experimental and RSM models for surface finish was 4.76 percent and 2.79 percent for flank wear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.