The present study is focused on investigating the mechanical properties of hybrid polymer composites. The reinforcement materials are animal bone (ox) particulate and E-glass fiber. The matrix material is epoxy resin. The following combinations are considered for investigation: (a) bone particulate weight percent (20%, 30%, and 40%), (b) E-glass fiber weight percent (20%, 30%, and 40%), and (c) bone particulate (10%, 20%, and 30%) and E-glass fiber (30%, 20%, and 10%) with epoxy resin 60% by weight percent. The test specimens are prepared as per the required ASTM standard for tensile, compressive, and flexural tests. The test results show that maximum tensile and compressive strength observed in 40% of E-glass fiber with 60% of epoxy matrix, correspondingly, is 254.964 MPa and 37.52 MPa. The maximum flexural strength observed in E-glass fiber reinforced composites is 250.43 MPa.
Aircraft component manufacturing sector is looking for high precision machining in aircraft components. The present work explores the operability of green manufacturing of Nimonic C263 using dry turning. Nimonic C263 is tough to turn owing to its inherent quality like low conductivity and more work hardening. Therefore, in order to improve this machined surface/integrity, the controlling factors were optimized based on desirability approach for minimum of surface roughness and flank wear during turning of this alloy using CBN insert. L27 orthogonal array was chosen to carry out the experiment. The effects of controlling factors, such as cutting speed (
V
), feed rate (
S
), and cut penetration/depth of cut (
a
p
) on the outputs, were also explored. The feed rate was a major impact to affect surface finish and flank wear. The average error percentage between the experimental and RSM models for surface finish was 4.76 percent and 2.79 percent for flank wear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.