This is the third in a series of papers on the construction of explicit solutions to the stationary axisymmetric Einstein equations which can be interpreted as counter-rotating disks of dust. We discuss the physical properties of a class of solutions to the Einstein equations for disks with constant angular velocity and constant relative density which was constructed in the first part. The metric for these spacetimes is given in terms of theta functions on a Riemann surface of genus 2. It is parameterized by two physical parameters, the central redshift and the relative density of the two counter-rotating streams in the disk. We discuss the dependence of the metric on these parameters using a combination of analytical and numerical methods. Interesting limiting cases are the Maclaurin disk in the Newtonian limit, the static limit which gives a solution of the Morgan and Morgan class and the limit of a disk without counter-rotation. We study the mass and the angular momentum of the spacetime. At the disk we discuss the energy-momentum tensor, i.e. the angular velocities of the dust streams and the energy density of the disk. The solutions have ergospheres in strongly relativistic situations. The ultrarelativistic limit of the solution in which the central redshift diverges is discussed in detail: In the case of two counter-rotating dust components in the disk, the solutions describe a disk with diverging central density but finite mass. In the case of a disk made up of one component, the exterior of the disks can be interpreted as the extreme Kerr solution.
A code for the numerical evaluation of hyperelliptic theta-functions is presented. Characteristic quantities of the underlying Riemann surface such as its periods are determined with the help of spectral methods. The code is optimized for solutions of the Ernst equation where the branch points of the Riemann surface are parameterized by the physical coordinates. An exploration of the whole parameter space of the solution is thus only possible with an efficient code. The use of spectral approximations allows for an efficient calculation of all quantities in the solution with high precision. The case of almost degenerate Riemann surfaces is addressed. Tests of the numerics using identities for periods on the Riemann surface and integral identities for the Ernst potential and its derivatives are performed. It is shown that an accuracy of the order of machine precision can be achieved. These accurate solutions are used to provide boundary conditions for a code which solves the axisymmetric stationary Einstein equations. The resulting solution agrees with the thetafunctional solution to very high precision.
We derive a general integral formula on an embedded hypersurface for general relativistic space-times. Suppose the hypersurface is foliated by two-dimensional compact "sections" Ss. Then the formula relates the rate of change of the divergence of outgoing light rays integrated over Ss under change of section to geometric (convexity and curvature) properties of Ss and the energy-momentum content of the space-time. We derive this formula using the Sparling-Nester-Witten identity for spinor fields on the hypersurface by appropriate choice of the spinor fields. We discuss several special cases which have been discussed in the literature before, most notably the Bondi mass loss formula.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.