We describe a prototype designed for in situ detection of the nitrate radical (NO3) by laser-induced fluorescence (LIF) and of N2O5 by thermal dissociation followed by LIF detection of NO3. An inexpensive 36 mW continuous wave multi-mode diode laser at 662 nm is used to excite NO3 in the B2E'(0000) <-- X2A'2(0000) band. Fluorescence is collected from 700 to 750 nm. The prototype has a sensitivity to NO3 of 76 ppt for a 60 s integration with an accuracy of 8%. Although this sensitivity is adequate for studies of N205 in many environments, it is much less sensitive (about 300 times) than expected based on a comparison of previously measured photophysical properties of NO2 and NO3. This implies much stronger nonradiative coupling of electronic states in NO3 than in NO2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.