The total thermal conductivity lambda of resorcinol-formaldehyde aerogel monoliths has been measured as a function of density rho in the range from rho = 80 to 300 kilograms per cubic meter. A record-low conductivity value in air at 300 K of lambda approximately 0.012 watt per meter per kelvin was found for rho approximately 157 kilograms per cubic meter. Caloric measurements under variation of gas pressure as well as spectral infrared transmission measurements allowed the determination of solid conductivity, gaseous conductivity, and radiative conductivity as a function of density. The development of such low conductivity materials is of great interest with respect to the substitution of environmentally harmful insulating foams made from chlorofluorocarbons.
The thermal conductivity of electrochemically etched porous silicon (PS) layers was determined over a wide temperature range (T = 35 - 320 K) using the dynamic technique. Both the doping level of the silicon wafers (p and ) and the porosity P of the porous layers (P = 64 - 89%) were varied. The measured thermal conductivities were three to five orders of magnitude smaller than the values for bulk silicon. Furthermore, they increase with increasing the wafer doping level and with decreasing the porosity P of the layers. For all investigated PS layers the thermal conductivity increases with temperature. The results are discussed in terms of a simple model for heat conduction in PS based on the phonon diffusion model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.