Ejection of Martian meteorites
Tracheal cytotoxin (TCT) was originally described as the minimal effector that was able to reproduce the cytotoxic response of Bordetella pertussis on ciliated epithelial cells. This molecule triggers pleiotropic effects such as immune stimulation or slowwave sleep modulation. Further characterization identified TCT as a specific diaminopimelic acid (DAP)-containing muropeptide, GlcNAc-(anhydro)MurNAc-L-Ala-D-Glu-mesoDAP-D-Ala. Here, we show that the biological activity of TCT depends on Nod1, an intracellular sensor of bacterial peptidoglycan. However, Nod1-dependent detection of TCT was found to be host specific, as human Nod1 (hNod1) poorly detected TCT, whereas mouse Nod1 (mNod1) did so efficiently. More generally, hNod1 required a tripeptide (L-Ala-D-Glu-mesoDAP) for efficient sensing of peptidoglycan, whereas mNod1 detected a tetrapeptide structure (L-Ala-D-Glu-mesoDAP-D-Ala). In murine macrophages, TCT stimulated cytokine secretion and NO production through Nod1. Finally, in vivo, injection of the tetrapeptide structure in mice triggered a transient yet strong release of cytokines into the bloodstream and the maturation of macrophages, in a Nod1-dependent manner. This study thereby identifies Nod1 as the long sought after sensor of TCT in mammals.
The current shock classification scheme of meteorites assigns shock levels of S1 (unshocked) to S6 (very strongly shocked) using shock effects in rock-forming minerals such as olivine and plagioclase. The S6 stage (55-90 GPa; 850-1750°C) relies solely on localized effects in or near melt zones, the recrystallization of olivine, or the presence of mafic high-pressure phases such as ringwoodite. However, high whole rock temperatures and the presence of high-pressure phases that are unstable at those temperatures and pressures of zero GPa (e.g., ringwoodite) are two criteria that exclude each other. Each type of high-pressure phase provides a minimum shock pressure during elevated pressure conditions to allow the formation of this phase, and a maximum temperature of the whole rock after decompression to allow the preservation of this phase. Rocks classified as S6 are characterized not by the presence but by the absence of those thermally unstable highpressure phases. High-pressure phases in or attached to shock melt zones form mainly during shock pressure decline. This is because shocked rocks (<60 GPa) experience a shock wave with a broad isobaric pressure plateau only during low velocity (<4.5 km s À1 ) impacts, which rarely occur on small planetary bodies; e.g., the Moon and asteroids. The mineralogy of shock melt zones provides information on the shape and temporal duration of the shock wave but no information on the general maximum shock pressure in the whole rock.
The scenario of lithopanspermia describes the viable transport of microorganisms via meteorites. To test the first step of lithopanspermia, i.e., the impact ejection from a planet, systematic shock recovery experiments within a pressure range observed in martian meteorites (5-50 GPa) were performed with dry layers of microorganisms (spores of Bacillus subtilis, cells of the endolithic cyanobacterium Chroococcidiopsis, and thalli and ascocarps of the lichen Xanthoria elegans) sandwiched between gabbro discs (martian analogue rock). Actual shock pressures were determined by refractive index measurements and Raman spectroscopy, and shock temperature profiles were calculated. Pressure-effect curves were constructed for survival of B. subtilis spores and Chroococcidiopsis cells from the number of colony-forming units, and for vitality of the photobiont and mycobiont of Xanthoria elegans from confocal laser scanning microscopy after live/dead staining (FUN-I). A vital launch window for the transport of rock-colonizing microorganisms from a Mars-like planet was inferred, which encompasses shock pressures in the range of 5 to about 40 GPa for the bacterial endospores and the lichens, and a more limited shock pressure range for the cyanobacterium (from 5-10 GPa). The results support concepts of viable impact ejections from Mars-like planets and the possibility of reseeding early Earth after asteroid cataclysms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.