The study was conducted to analyze the genetic parameters of somatic cell score (SCS) of Holstein cows, which is an important indicator to udder health. Test-day records of somatic cell counts (SCC) of 305-day lactation design from first to fifth lactations were collected on Holsteins in Korea during 2000 to 2012. Records of animals within 18 to 42 months, 30 to 54 months, 42 to 66 months, 54 to 78 months, and 66 to 90 months of age at the first, second, third, fourth and fifth parities were analyzed, respectively. Somatic cell scores were calculated, and adjusted for lactation production stages by Wilmink’s function. Lactation averages of SCS (LSCS1 through LSCS5) were derived by further adjustments of each test-day SCS for five age groups in particular lactations. Two datasets were prepared through restrictions on number of sires/herd and dams/herd, progenies/sire, and number of parities/cow to reduce data size and attain better relationships among animals. All LSCS traits were treated as individual trait and, analyzed through multiple-trait sire models and single trait animal models via VCE 6.0 software package. Herd-year was fitted as a random effect. Age at calving was regressed as a fixed covariate. The mean LSCS of five lactations were between 3.507 and 4.322 that corresponded to a SCC range between 71,000 and 125,000 cells/mL; with coefficient of variation from 28.2% to 29.9%. Heritability estimates from sire models were within the range of 0.10 to 0.16 for all LSCS. Heritability was the highest at lactation 2 from both datasets (0.14/0.16) and lowest at lactation 5 (0.11/0.10) using sire model. Heritabilities from single trait animal model analyses were slightly higher than sire models. Genetic correlations between LSCS traits were strong (0.62 to 0.99). Very strong associations (0.96 to 0.99) were present between successive records of later lactations. Phenotypic correlations were relatively weaker (<0.55). All correlations became weaker at distant lactations. The estimated breeding values (EBVs) of LSCS traits were somewhat similar over the years for a particular lactation, but increased with lactation number increment. The lowest EBV in first lactation indicated that selection for SCS (mastitis resistance) might be better with later lactation records. It is expected that results obtained from these multi-trait lactation model analyses, being the first large scale SCS data analysis in Korea, would create a good starting step for application of advanced statistical tools for future genomic studies focusing on selection for mastitis resistance in Holsteins of Korea.
This study was aimed to solve the problems of current national genetic evaluation systems in Korea and its development to pass the verification processes as required by International Bull Evaluation Service (Interbull). This will enable Korea to participate in international genetic evaluation program. A total of 1,416,589 test-day milk records with calving dates used in this study were collected by National Agricultural Cooperative Federation from 2001 to 2009. Parity was limited up to fifth calving and milk production records were adjusted to cumulative 305 day lactation. The pedigree consisted of 2,279,741 animals where 2,467 bulls had 535,409 parents. A newly developed multiple trait model was used in calculation of breeding values for milk yield, milk fat, and protein yield. Data were edited with SAS (version 9.2) and R programs, and genetic parameters were estimated using VCE 6.0. Results showed a continuous increase in genetic potentials, in general, and no remarkable differences were found between performances by parity. Except fat yield, potentials in milk yield and protein yield were well calculated. We found an increased number of daughters per each top ranked 1,000 bulls in recent years of calf births compared to the cases of previous evaluations. Of the bulls ranked top 100 by our new models (multiple-trait models) we found that increased numbers of bulls were included. Of twenty eight bulls born in 2006, twenty bulls born in 2007 and eight bulls born in 2008 that were listed by new models, only 23, 12, and 2 bulls born in respective years were represented on top 100 by old single-trait models. Re-ranking of the daughters or sires by multiple-trait models suggest that this new multiple trait approach should be used for dairy cattle genetic evaluation and seed-stock selection in the future to increase the accuracy of multiple trait selection. Breeding values for these traits should also be calculated by new method for international genetic evaluation.
The genetic connectedness between herds is an essential requirement to make robust across-herd estimation of the breeding values of the animals. In this study, genetic connectedness between herds was evaluated by a connectedness rating method. A total of 24,971 records of days to 90 kg (D90KG) of the pigs on performance testing programs collected from six herds (labeled from 'A' to 'F') of Duroc breed along with pedigree information comprising 456,697 families were used. Results showed that a total of eight boars were used for semen exchange programs among participant farms. Herds 'A' through 'E' were found strongly connected among them. But 'F' herd was genetically connected strongly only with 'A' herd. The highest average connectedness rating was 91.7% between 'A' herd and 'C' herd. The lowest average connectedness rating was 65.1% between 'D' and 'F'. The concept of a single genetic group comprising six Duroc herds studied is meaningful due to high connectedness rates among them. Therefore, with this high genetic ties between participant Duroc farms, the more accurate genetic evaluation would be possible.
The purpose of this study was to estimate (co) variance components of three milk production traits for genetic evaluation using a multiple lactation model. Each of the first five lactations was treated as different traits. For the parameter estimation study, a data set was set up including lactations from cows calved from 2001 to 2009. The total number of raw lactation records in first to fifth parities reached 1,416,589. At least 10 cows were required for each contemporary group, herd-year-season effect. Sires with fewer than 10 daughters were discarded. Lactations with 305d milk yield exceeding 15,000 kg were removed. In total, 1,456 sires of cows were remained after all the selection steps. A complete pedigree consisting of 292,382 records was used for the study. A sire model containing herd-year-season, caving age, and sire additive genetic effects was applied to the selected lactation data and pedigree for estimating (co) variance components via VCE. Heritabilities and genetic or residual correlations were then derived from the (co) variance estimates using R package. Genetic correlations between lactations ranged from 0.76 to 0.98 for milk yield, 0.79~1.00 for fat yield, 0.75~1.00 for protein yield. On individual lactation basis, relatively low heritability values were obtained 0.14~0.23, 0.13~0.20 and 0.14~0.19 for milk, fat, and protein yields, respectively. For the combined lactation heritability values were 0.29, 0.28, and 0.26 for milk, fat, and protein yields. The estimated parameters will be used in national genetic evaluations for production traits.
Moving behavior of groups of Hanwoo was observed when solid side was applied along the straight single file chute. Dark blue liners (PVC coated fabric) were hung on the outer side along the steel bars of chute to block vision of cattle. Ten animals were grouped together in a batch to move through chute to the restrainter. Movement of animals through chutes were significantly faster when solid side with liners were applied than when they had open vision of flight zone. And the difference in movement time between of solid side and open side was even greater in a longer chute than in a shorter one. From the experiment with longer chute, we could not find any significant differences between presence or absence of solid sides in the time spent for the leaading cattle to enter the squeeze chute from crowd pen. But the average time spent for movement from squeeze gait to restrainter was 22.78 ± 1.15 seconds with solid sides, which was much shorter than with open sides (40.56 ± 4.46 seconds). Time required for batch of animals to move from crowd pen to restrainter and exit was much faster with solid sides than with open sides: 96.33 ± 3.98 seconds vs. 121.89 ± 5.54 seconds from leading animal to enter the squeeze chute until the last animal of the batch to exit restrainter and 104.56 ± 3.89 vs. 131.22 ± 6.42 seconds for the whole batch of animals to enter the squeeze chute and exit restrainter. Another experiment with shorter chute showed that animals balked to right angled edge of the crowed pen before entering squeeze chute. We could not find any differences in time requred for the leading animal to enter the crowd pen from holding pen. Total time spent from entrance of leading animal to crowd pen until the last animal to exit restrainter was shorter with solid sides than with open sides: 177.44 ± 5.20 seconds vs. 193.44 ± 7.46 seconds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.