At present, prostate-specific antigen (PSA) is used as a clinical biomarker for prostate cancer (PCa) diagnosis; however, a large number of patients with benign prostate hyperplasia (BPH) with PSA levels in the ʻgray areaʼ (4–10 ng/ml) are currently subjected to unnecessary biopsy due to overdiagnosis. Certain microRNAs (miRs) have been proven to be useful biomarkers, several of which are detectable in bodily fluids. The present study identified and validated a urinary miR-based signature to enhance the specificity of PCa diagnosis and to reduce the number of patients with benign conditions undergoing biopsy. Seventy-three urine samples from Mexican patients with diagnosis of PCa with a Gleason score ≥7 and 70 patients diagnosed with BPH were collected after digital rectal examination (DRE) of the prostate. miR expression profiles were determined using TaqMan Low Density Array experiments, and normalized Ct values for the miRs were compared between PCa and BPH groups. Receiver operating characteristic (ROC) curve analysis was performed to evaluate whether miR detection in urine is suitable for distinguishing patients with PCa from those with BPH. The identified miR-100/200b signature was significantly correlated with PCa. Using a multivariable logistic regression approach, a base model including the clinical variables age, prostate-specific antigen (PSA), the percentage of free PSA and DRE was generated, and a second base model additionally contained the miR-100/200b signature. ROC analysis demonstrated that the combined model significantly outperformed the capacity of PSA (P<0.001) and the base model (P=0.01) to discriminate between PCa and BPH patients. In terms of evaluation of the sub-group of patients in the gray zone of PSA levels, the performance of the combined model for predicting PCa cases was significantly superior to PSA level determination (P<0.001) and the base model (P=0.009). In addition, decision curve analysis demonstrated that the use of the combined model increased the clinical benefit for patients and produced a substantial reduction in unnecessary biopsies across a range of reasonable threshold probabilities (10–50%). Detection of the urinary miR signature identified in the present study as part of clinical diagnostic procedures will enhance the accuracy of PCa diagnosis and provide a clinical benefit for patients with BPH by sparing them from undergoing invasive biopsy. To the best of our knowledge, the present study was the first to describe the profiling of urinary miR100 and miR-200b levels for the clinical diagnosis of PCa.
In prostate cancer (PCa), neuroendocrine cells (NE) have been associated with the progression of the disease due to the secretion of neuropeptides that are capable of diffusing and influence surrounding cells. The GABAergic system is enriched in NE-like cells, and contributes to PCa progression. Additionally, γ-aminobutyric acid (GABA) stimulates the secretion of gastrin-releasing peptide (GRP) in peripheral organs. For the first time, in this study we show the role of GABA and GABAB receptor 1 (GABBR1) expression in GRP secretion in NE-like prostate cancer cells. We demonstrated an increase in GRP levels in NE-like cell medium treated with GABAB receptor agonist. Moreover, the blocking of this receptor inhibited GABA-induced GRP secretion. The invasive potential of PC3 cells was enhanced by either GRP or conditioned medium of NE-like cells treated with GABA. Additionally, we confirmed a positive correlation between GABA and GRP levels in the serum of PCa patients with NE markers. Finally, using public available data sets, we found a negative correlation between GABBR1 and androgen receptor (AR) expression, as well as a strong positive correlation between GABBR1 and enolase 2. These results suggest that GABA via GABBR1 induces GRP secretion in NE like cells involved in PCa progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.