Depending on the amount of aeolian sediment input and dune erosion, dune size and morphology change over time. Since coastal foredunes play an important role in the Dutch coastal defence, it is important to have good insight in the main factors that control these changes. In this paper the temporal variations in foredune erosion and accretion were studied in relation to proxies for aeolian transport potential and storminess using yearly elevation measurements from 1965 to 2012 for six sections of the Dutch coast. Longshore differences in the relative impacts of erosion and accretion were examined in relation to local beach width. The results show that temporal variability in foredune accretion and erosion is highest in narrow beach sections. Here, dune erosion alternates with accretion, with variability displaying strong correlations with yearly values of storminess (maximum sea levels). In wider beach sections, dune erosion is less frequent, with lower temporal variability and stronger correlations with time series of transport potential. In erosion dominated years, eroded volumes decrease from narrow to wider beaches. When accretion dominates, dune-volume changes are relatively constant alongshore. Dune erosion is therefore suggested to control spatial variability in dune-volume changes. On a scale of decades, the volume of foredunes tends to increase more on wider beaches. However, where widths exceed 200 to 300 m, this trend is no longer observed.
Research data belonging to the article on "Modeling the biogeomorphic evolution of coastal dunes in response to climate change". Data consist of input and output of model runs
Coastal dunes play an important role in coastal defense along sandy shorelines of the world. The majority of the shorelines experience erosion and this erosion is expected to accelerate under anthropogenic climate change and subsequent sea level rise. This paper investigates the impact of climate change, sea level rise and current management for coastal dunes in the Netherlands. Furthermore the paper discusses the implications of climate change projections for adaptation strategies into the future. Recent climate change scenarios for the Netherlands highlight rising temperature and accelerated sea-level rise. Their combined effects on dune-building processes are expected to be manifested through an increase in erosive forces at the expensive of accretive forces. In the Netherlands, a negative sand balance and inland migration of the beach-dune system has been successfully counteracted in the last decades through the application of sand nourishments. These have enhanced accretion on the one hand and limited erosion on the other hand. Generally, coastal protection has improved despite rising sea levels. Important preconditions that make this sand nourishment strategy possible are: a readily available sand resource that makes exploitation technically and economically feasible; a sound monitoring system supported by solid science; political consensus and a good institutional structure to implement the strategy. In the Netherlands, the necessary preconditions are already in place to successfully adapt to sea level rise. Given the expected accelerated rise in sea level and its potential effects on the dune-beach sediment balance, the annual sand nourishment will need to be intensified to ensure the preservation and integrity of the coastal zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.