Large Type-I Edge Localized Modes (ELMs) are completely eliminated with small n = 3 resonant magnetic perturbations (RMP) in low average triangularity, " = 0.26, plasmas and in ITER Similar Shaped (ISS) plasmas, " = 0.53, with ITER relevant collisionalities v e " # 0.2. Significant differences in the RMP requirements and in the properties of the ELM suppressed plasmas are found when comparing the two triangularities. In ISS plasmas, the current required to suppress ELMs is approximately 25% higher than in low average triangularity plasmas. It is also found that the width of the resonant q 95 window required for ELM suppression is smaller in ISS plasmas than in low average triangularity plasmas. An analysis of the positions and widths of resonant magnetic islands across the pedestal region, in the absence of resonant field screening or a self-consistent plasma response, indicates that differences in the shape of the q profile may explain the need for higher RMP coil currents during ELM suppression in ISS plasmas. Changes in the pedestal profiles are compared for each plasma shape as well as with changes in the injected neutral beam power and the RMP amplitude. Implications of these results are discussed in terms of requirements for optimal ELM control coil designs and for establishing the physics basis needed in order to scale this approach to future burning plasma devices such as ITER.
Cross-field fluctuation-driven transport is studied in edge and scrape-off layer (SOL) plasmas in the DIII-D tokamak using a fast reciprocating Langmuir probe array allowing local measurements of the fluctuation-driven particle and heat fluxes. Two different non-diffusive mechanisms that can contribute strongly to the cross-field transport in the SOL of high-density discharges are identified and compared. The first of these involves intermittent transport events that are observed at the plasma separatrix and in the SOL. Intermittence has qualitatively similar character in L-mode and ELM-free H-mode. Low-amplitude ELMs observed in high-density H-mode produce in the SOL periods with cross-field transport enhanced to L-mode levels and featuring intermittent events similar to those in L-mode. The intermittent transport events are compatible with the concept of plasma filaments propagating across the SOL due to E × B drifts. The intermittent character of the transport in the SOL is also in agreement with predictions of the non-linear numerical simulations performed with an imposed driving flux. Another type of non-diffusive transport is often seen in high-density H-modes with prolonged ELM-free periods, where the transport near the separatrix is dominated by quasi-coherent modes driving particle and/or heat fluxes exceeding L-mode levels. These modes may play an important role by providing particle and/or heat exhaust between ELMs.
ABSTRACT. Toroidicity induced AlfvCn eigenmodes (TAE) are observed in the DIII-D tokamak when energetic beam ions (-75 keV) are used to destabilize the mode. Measurements of the neutron emission indicate that up to 70% of the injected power is lost during strong TAE activity. Measurements of the poloidal distribution of fast ion losses suggest that the losses are greatest near the vessel midplane. Fast ion losses in discharges with combined fishbones and TAE bursts are 1.5 to 2 times greater than losses in fishbone discharges without TAE activity. The scaling of fast ion losses with MHD mode amplitude exhibits no threshold in the mode amplitude, suggesting that mode particle pumping is the dominant loss mechanism.
H-mode operation is the choice for next-step tokamak devices based either on conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge-localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the β limit and reduced core transport regions needed for advanced tokamak operation. Recent experimental results from DIII-D have demonstrated a new operating regime, the quiescent H-mode regime, which solves these problems. We have achieved quiescent H-mode operation which is ELM-free and yet has good density control. In addition, we have demonstrated that an internal transport barrier can be produced and maintained inside the H-mode edge barrier for long periods of time (>3.5 s or >25 energy confinement times τ E ). By forming the core barrier and then stepping up the input power, we have achieved β N H 89 = 7 for up to 10 times the τ E of 160 ms. The β N H 89 values of 7 substantially exceed the value of 4 routinely achieved in standard ELMing H-mode. The key factors in creating the quiescent H-mode operation are neutral beam injection in the direction opposite to the plasma current (counter injection) plus cryopumping to reduce the density. Density control in the quiescent H-mode is possible because of the presence of an edge MHD oscillation, the edge harmonic oscillation, which enhances the edge particle transport while leaving the energy transport unaffected.
IAEA-CN-116/EX/P5-29 This is a preprint of a paper intended for presentation at a scientific meeting. Because of the provisional nature of its content and since changes of substance or detail may have to be made before publication, the preprint is made available on the understanding that it will not be cited in the literature or in any way be reproduced in its present form. The views expressed and the statements made remain the responsibility of the named author(s); the views do not necessarily reflect those of the government of the designating Member State(s) or of the designating organization(s). In particular, neither the IAEA nor any other organization or body sponsoring this meeting can be held responsible for any material reproduced in this preprint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.