Understanding how developmental systems evolve after genome amplification is important for discerning the origins of vertebrate novelties, including neural crest, placodes, cartilage and bone. Sox9 is important for the development of these features, and zebrafish has two co-orthologs of tetrapod SOX9 stemming from an ancient genome duplication event in the lineage of ray-fin fish. We have used a genotype-driven screen to isolate a mutation deleting sox9b function, and investigated its phenotype and genetic interactions with a sox9a null mutation. Analysis of mutant phenotypes strongly supports the interpretation that ancestral gene functions partitioned spatially and temporally between Sox9 co-orthologs. Distinct subsets of the craniofacial skeleton, otic placode and pectoral appendage express each gene, and are defective in each single mutant. The double mutant phenotype is additive or synergistic. Ears are somewhat reduced in each single mutant but are mostly absent in the double mutant. Loss-of-function animals from mutations and morpholino injections, and gain-of-function animals injected with sox9a and sox9b mRNAs showed that sox9 helps regulate other early crest genes, including foxd3, sox10, snai1b and crestin, as well as the cartilage gene col2a1 and the bone gene runx2a;however, tfap2a was nearly unchanged in mutants. Chondrocytes failed to stack in sox9a mutants, failed to attain proper numbers in sox9b mutants and failed in both morphogenetic processes in double mutants. Pleiotropy can cause mutations in single copy tetrapod genes, such as Sox9, to block development early and obscure later gene functions. By contrast, subfunction partitioning between zebrafish co-orthologs of tetrapod genes, such as sox9a and sox9b, can relax pleiotropy and reveal both early and late developmental gene functions.
Electrical activity in neurons is generally initiated in dendritic processes then propagated along axons to synapses, where it is passed to other neurons. Major structural features of neurons-their dendrites and axons-are thus related to their fundamental functions: the receipt and transmission of information. The acquisition of these distinct properties by dendrites and axons, called polarization, is a critical step in neuronal differentiation. We show here that SAD-A and SAD-B, mammalian orthologs of a kinase needed for presynaptic differentiation in Caenorhabditis elegans, are required for neuronal polarization. These kinases will provide entry points for unraveling signaling mechanisms that polarize neurons.
Adult mammalian cardiomyocyte regeneration after injury is thought to be minimal. Mononuclear diploid cardiomyocytes (MNDCMs), a relatively small subpopulation in the adult heart, may account for the observed degree of regeneration, but this has not been tested. We surveyed 120 inbred mouse strains and found that the frequency of adult mononuclear cardiomyocytes was surprisingly variable (>7-fold). Cardiomyocyte proliferation and heart functional recovery after coronary artery ligation both correlated with pre-injury MNDCM content. Using genome-wide association, we identified Tnni3k as one gene that influences variation in this composition and demonstrated that Tnni3k knockout resulted in elevated MNDCM content and increased cardiomyocyte proliferation after injury. Reciprocally, overexpression of Tnni3k in zebrafish promoted cardiomyocyte polyploidization and compromised heart regeneration. Our results corroborate the relevance of MNDCMs in heart regeneration. Moreover, they imply that intrinsic heart regeneration is not limited nor uniform in all individuals, but rather is a variable trait influenced by multiple genes.
Hedgehog (Hh) signaling plays multiple roles in the development of the anterior craniofacial skeleton. We show that the earliest function of Hh is indirect, regulating development of the stomodeum, or oral ectoderm. A subset of post-migratory neural crest cells, that gives rise to the cartilages of the anterior neurocranium and the pterygoid process of the palatoquadrate in the upper jaw, condenses upon the upper or roof layer of the stomodeal ectoderm in the first pharyngeal arch. We observe that in mutants for the Hh co-receptor smoothened (smo) the condensation of this specific subset of crest cells fails, and expression of several genes is lost in the stomodeal ectoderm. Genetic mosaic analyses with smo mutants show that for the crest cells to condense the crucial target tissue receiving the Hh signal is the stomodeum, not the crest. Blocking signaling with cyclopamine reveals that the crucial stage, for both crest condensation and stomodeal marker expression, is at the end of gastrulation -some eight to ten hours before crest cells migrate to associate with the stomodeum. Two Hh genes, shh and twhh, are expressed in midline tissue at this stage, and we show using mosaics that for condensation and skeletogenesis only the ventral brain primordium, and not the prechordal plate, is an important Hh source. Thus, we propose that Hh signaling from the brain primordium is required for proper specification of the stomodeum and the stomodeum, in turn, promotes condensation of a subset of neural crest cells that will form the anterior neurocranial and upper jaw cartilage.
Fibroblast growth factor (Fgf) proteins are important regulators of pharyngeal arch development. Analyses of Fgf8 function in chick and mouse and Fgf3 function in zebrafish have demonstrated a role for Fgfs in the differentiation and survival of postmigratory neural crest cells (NCC) that give rise to the pharyngeal skeleton. Here we describe, in zebrafish, an earlier, essential function for Fgf8 and Fgf3 in regulating the segmentation of the pharyngeal endoderm into pouches. Using time-lapse microscopy, we show that pharyngeal pouches form by the directed lateral migration of discrete clusters of endodermal cells. In animals doubly reduced for Fgf8 and Fgf3, the migration of pharyngeal endodermal cells is disorganized and pouches fail to form. Transplantation and pharmacological experiments show that Fgf8 and Fgf3 are required in the neural keel and cranial mesoderm during early somite stages to promote first pouch formation. In addition, we show that animals doubly reduced for Fgf8 and Fgf3 have severe reductions in hyoid cartilages and the more posterior branchial cartilages. By examining early pouch and later cartilage phenotypes in individual animals hypomorphic for Fgf function,we find that alterations in pouch structure correlate with later cartilage defects. We present a model in which Fgf signaling in the mesoderm and segmented hindbrain organizes the segmentation of the pharyngeal endoderm into pouches. Moreover, we argue that the Fgf-dependent morphogenesis of the pharyngeal endoderm into pouches is critical for the later patterning of pharyngeal cartilages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.