The complex communities of microorganisms that colonise the human gastrointestinal tract play an important role in human health. The development of culture-independent molecular techniques has provided new insights in the composition and diversity of the intestinal microbiota. Here, we summarise the present state of the art on the intestinal microbiota with specific attention for the application of high-throughput functional microbiomic approaches to determine the contribution of the intestinal microbiota to human health. Moreover, we review the association between dysbiosis of the microbiota and both intestinal and extra-intestinal diseases. Finally, we discuss the potential of probiotic microorganism to modulate the intestinal microbiota and thereby contribute to health and well-being. The effects of probiotic consumption on the intestinal microbiota are addressed, as well as the development of tailor-made probiotics designed for specific aberrations that are associated with microbial dysbiosis.
OBJECTIVE -Measures of baroreflex sensitivity, heart rate variability (HRV), and the classical Ewing test parameters are currently used for the diagnosis of diabetic autonomic neuropathy and for mortality risk stratification after myocardial infarction. However, the strengths of the associations of these measures of autonomic function with risk of mortality have never been compared in one study population. Furthermore, no evidence is available on the possible effect of glucose tolerance on these associations. RESEARCH DESIGN AND METHODS-The study population (n ϭ 605) consisted of a glucose tolerance-stratified sample from a general population (50 -75 years of age). Cardiac cycle duration and continuous finger arterial pressure were measured under two conditions: at rest and on metronome breathing. From these readings, seven parameters of autonomic function were assessed (one Ewing, five HRV, and one baroreflex sensitivity).RESULTS -During 9 years of follow-up, 101 individuals died, 43 from cardiovascular causes. Subjects with diabetes and low levels of the autonomic function parameters, indicating impaired autonomic function, had an approximately doubled risk of mortality. This association was consistent, though not statistically significant, for all parameters. The elevated risk was not observed in subjects without diabetes, hypertension, or prevalent cardiovascular disease.CONCLUSIONS -Impaired autonomic function is associated with all-cause and cardiovascular mortality. Moreover, the results of the present study suggest that cardiac autonomic dysfunction in patients already at risk (diabetes, hypertension, or history of cardiovascular disease) may be especially hazardous.
Human IgG3 displays the strongest effector functions of all IgG subclasses but has a short half-life for unresolved reasons. Here we show that IgG3 binds to IgG-salvage receptor (FcRn), but that FcRn-mediated transport and rescue of IgG3 is inhibited in the presence of IgG1 due to intracellular competition between IgG1 and IgG3. We reveal that this occurs because of a single amino acid difference at position 435, where IgG3 has an arginine instead of the histidine found in all other IgG subclasses. While the presence of R435 in IgG increases binding to FcRn at neutral pH, it decreases binding at acidic pH, affecting the rescue efficiency—but only in the presence of H435–IgG. Importantly, we show that in humans the half-life of the H435-containing IgG3 allotype is comparable to IgG1. H435–IgG3 also gave enhanced protection against a pneumococcal challenge in mice, demonstrating H435–IgG3 to be a candidate for monoclonal antibody therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.