Accelerating gradients in excess of 100 MV=m, at very low breakdown rates, have been successfully achieved in numerous prototype CLIC accelerating structures. The conditioning and operational histories of several structures, tested at KEK and CERN, have been compared and there is clear evidence that the conditioning progresses with the number of rf pulses and not with the number of breakdowns. This observation opens the possibility that the optimum conditioning strategy, which minimizes the total number of breakdowns the structure is subject to without increasing conditioning time, may be to never exceed the breakdown rate target for operation. The result is also likely to have a strong impact on efforts to understand the physical mechanism underlying conditioning and may lead to preparation procedures which reduce conditioning time.
In an increasing number of high-gradient linear accelerator applications, accelerating structures must operate with both high surface electric fields and low breakdown rates. Understanding the statistical properties of breakdown occurrence in such a regime is of practical importance for optimizing accelerator conditioning and operation algorithms, as well as of interest for efforts to understand the physical processes which underlie the breakdown phenomenon. Experimental data of breakdown has been collected in two distinct high-gradient experimental setups: A prototype linear accelerating structure operated in the Compact Linear Collider Xbox 12 GHz test stands, and a parallel plate electrode system operated with pulsed DC in the kV range. Collected data is presented, analyzed and compared. The two systems show similar, distinctive, two-part distributions of number of pulses between breakdowns, with each part corresponding to a specific, constant event rate. The correlation between distance and number of pulses between breakdown indicates that the two parts of the distribution, and their corresponding event rates, represent independent primary and induced follow-up breakdowns. The similarity of results from pulsed DC to 12 GHz rf indicates a similar vacuum arc triggering mechanism over the range of conditions covered by the experiments.
This paper details the development of a single-shot diagnostic technique for the 4D average and core phase space densities of low-charge, high-brightness electron beams, based on the analysis of shadow point-projection images of metal grids. This technique is similar to the standard pepper pot method, although it allows much greater transmission of the beam and therefore is more suitable for low-charge electron beams. Transverse coupling terms are included in the analysis, allowing the complete 4D transverse beam matrix to be reconstructed. The 4D beam phase space information is extremely important for the characterization of nonround beams. An analysis of the resolution limits and experimental benchmarking of the technique with pepper-pot emittance measurements are presented.
The use of sub-wavelength metal structures to locally enhance high frequency electromagnetic fields, generally known as plasmonics, enables breakthrough opportunities across diverse fields of research such as nonlinear optics, biosensing, photovoltaics and others. Here we study the application of sub-wavelength metallic resonators tuned in the THz frequency range for manipulation and diagnostics of relativistic electron beams. In this work, we report on the use of a double-sided split-ring structure driven by a near single cycle THz field generated by optical rectification to impart a time-dependent angular deviation (streak) on a 4.5 MeV electron beam. Electrons passing through the small gap reveal field enhancement factors larger than 10, in good agreement with finite difference time domain simulations. This work paves the way for further application of high frequency metallic structures in compact particle accelerators such as for THz-based relativistic electron streaking at fs and sub-fs temporal resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.