During the extrusion of aluminum alloys profiles using porthole dies, the temperature of the material in the welding chamber is one of crucial parameters determining the quality of longitudinal welds. In order to extend the permissible temperature range, the billets intended for this process should be characterized by the maximum attainable solidus temperature. Within the present work, the homogenization of AlZnMgCu alloys DC-cast (Direct Chill-cast) billets was investigated, with the aim of solidus temperature maximization. Conditions of soaking and cooling stages were analyzed. The materials were homogenized in laboratory conditions, and the microstructural effects were evaluated on the basis of DSC (Differential Scanning Calorimetry) tests and SEM/EDS (Scanning Electron Microscopy/Energy-Dispersive Spectroscopy) investigations. For all examined alloys, the unequilibrium low-melting microstructure components were dissolved during soaking, which led to the significant solidus temperature increase, in comparison to the as-cast state. The values within the range of 525–548 °C were obtained. In the case of alloy with highest Cu concentration, the application of two-step soaking was necessary. In order to take advantage of the high solidus temperature obtained after soaking, the cooling rate from homogenization must be controlled, and the effective cooling manner is strongly dependent on alloy composition. For high-Cu alloy, the solidus decreased, despite the fast cooling and the careful billets preheating being necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.