In this paper, the effect of applied multi-variant heat treatment on microstructure, phase composition and mechanical response of Haynes 282 nickel-based superalloy was investigated. For this reason, temperatures of both stages of standard two-stage aging treatment (i.e., 1010°C/2 h + 780°C/8 h) were extended to 900-1100°C/2 h and 680-880°C/8 h ranges, respectively. Consequently, 30 different variants of heat treatment were applied. The microstructural features of heat-treated samples were investigated by means of light microscopy and SEM/EDS methods, while mechanical properties were examined via microhardness measurements. It was found that by using various combinations of temperatures of the first and second stage of aging, the room temperature hardness of Haynes 282 alloy can be decreased by 100 HV units or increased by up to 25 HV units as compared to that of the alloy subjected to the standard heat treatment schedule. The mechanical response of the alloy is determined by a complex structural evolution involving the secondary precipitation of c¢, M 23 C 6 and M 6 C phases, as well as their interaction with the fcc c matrix.
PrecIPItatIon Processes durIng non-Isothermal ageIng of fIne-graIned 2024 alloyMechanical alloying and powder metallurgy procedures were used to manufacture very fine-grained bulk material made from chips of the 2024 aluminum alloy. Studies of solution treatment and precipitation hardening of as-received material were based on differential scanning calorimetry (DSC) tests and TEM/STEM/EDX structural observations. Structural observations complemented by literature data lead to the conclusion that in the case of highly refined structure of commercial 2024 alloys prepared by severe plastic deformation, typical multi-step G-P-B →θ" →θ' →θ precipitation mechanism accompanied with G-P-B →S" →S' →S precipitation sequences result in skipping the formation of metastable phases and direct growth of the stable phases. Exothermic effects on DSC characteristics, which are reported for precipitation sequences in commercial materials, were found to be reduced with increased milling time. Moreover, prolonged milling of 2024 chips was found to shift the exothermic peak to lower temperature with respect to the material produced by means of common metallurgy methods. This effect was concluded to result from preferred heterogeneous nucleation of particles at subboundaries and grain boundaries, enhanced by the boundary diffusion in highly refined structures.Transmission electron microscopy and diffraction pattern analysis revealed the development of very fine Al4C3 particles that grow due to the chemical reaction between the Al matrix and graphite flakes introduced as a process control agent during the preliminary milling of chips. Al4C3 nano-particles are formed at high temperatures, i.e. during hot extrusion and the subsequent solution treatment of the samples. Highly refined insoluble particles such as aluminum carbide particles and aluminum oxides were found to retard recrystallization and reduce recovery processes during solution treatment of preliminarily milled materials. Therefore, the as-extruded material composed of a milled part and chip residuals retained its initial bimodal structure in spite of solution heat treatment procedures. This points to a high structural stability of the investigated materials, which is commonly required for new technologies of high-strength Al-based materials production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.