Josephson junctions were photogenerated in underdoped thin films of the YBa2Cu3O6+x family using a near-field scanning optical microscope. The observation of the Josephson effect for separations as large as 100 nm between two wires indicates the existence of an anomalously large proximity effect and shows that the underdoped insulating material in the gap of the junction is readily perturbed into the superconducting state. The critical current of the junctions was found to be consistent with the conventional Josephson relationship. This result appears to constrain the applicability of SO(5) theory to explain the phase diagram of high critical temperature superconductors.
Normal metal-superconductor decoupling as a source of thermal fluctuation noise in transition-edge sensors J. Appl. Phys. 112, 034515 (2012) Transport critical-current density of superconducting films with hysteretic ferromagnetic dots AIP Advances 2, 022166 (2012) Pressure effects on strained FeSe0.5Te0.5 thin films J. Appl. Phys. 111, 112610 (2012) Magnetoresistance and transistor-like behavior of a double quantum-dot via crossed Andreev reflections J. Appl. Phys. 111, 113905 (2012) What are the internal field and the vortex density along the edges of a coated conductor or a superconducting bridge carrying current?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.