Polyurethanes based on poly(epsilon-caprolactone) (PCL) (750-2800 g/mol) and 1,4-butane diisocyanate (BDI) with different soft segment lengths and constant uniform hard segment length were synthesized in absence of catalysts for the production of a degradable meniscus scaffold. First the polyesterdiols were endcapped with BDI yielding a macrodiisocyanate with a minimal amount of side reactions and a functionality of 2.0. Subsequently, the macrodiisocyanates were extended with 1,4-butanediol in order to obtain the corresponding polyurethane. The polyurethanes had molecular weights between 78 and 160 kg/mol. Above molar masses of 1900 g/mol of the polyesterdiol crystalline PCL was found while the hard segment showed an increase in melting point from 78 to 122 degrees C with increasing hard segment content. It was estimated that the percentage crystallinity of the hard segment varied between 92 and 26%. The Young's modulus varied between 30 and 264 MPa, the strain at break varied between 870 and 1200% and tear strengths varied between 97 and 237 kJ/m2.
The porous polymer implant developed into a polymer-tissue construct that resembled the native meniscus, and with improved gliding characteristics, this prosthesis might be a promising implant for the replacement of the meniscus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.