In this paper we will discuss the fundamental ideas behind proof assistants: What are they and what is a proof anyway? We give a short history of the main ideas, emphasizing the way they ensure the correctness of the mathematics formalized. We will also briefly discuss the places where proof assistants are used and how we envision their extended use in the future. While being an introduction into the world of proof assistants and the main issues behind them, this paper is also a position paper that pushes the further use of proof assistants. We believe that these systems will become the future of mathematics, where definitions, statements, computations and proofs are all available in a computerized form. An important application is and will be in computer supported modelling and verification of systems. But their is still along road ahead and we will indicate what we believe is needed for the further proliferation of proof assistants.
Abstract. Logical systems in natural deduction style are usually presented in the Gentzen style. A different definition of natural deduction, that corresponds more closely to proofs in ordinary mathematical practice, is given in [Fitch 1952]. We define precisely a CurryHoward interpretation that maps Fitch style deductions to simply typed terms, and we analyze why it is not an isomorphism. We then describe three reduction relations on Fitch style natural deductions: one that removes garbage (subproofs that are not needed for the conclusion), one that removes repeats and one that unshares shared subproofs. We also define an equivalence relation that allows to interchange independent steps. We prove that two Fitch deductions are mapped to the same λ-term if and only if they are equal via the congruence closure of the aforementioned relations (the reduction relations plus the equivalence relation). This gives a Curry-Howard isomorphism between equivalence classes of Fitch deductions and simply typed λ-terms. Then we define the notion of cut-elimination on Fitch deductions, which is only possible for deductions that are completely unshared (normal forms of the unsharing reduction). For conciseness, we restrict in this paper to the implicational fragment of propositional logic, but we believe that our results extend to full first order predicate logic.
The Annual European Meeting of the Association for Symbolic Logic, also known as the Logic Colloquium, is among the most prestigious annual meetings in the field. The current volume, with contributions from plenary speakers and selected special session speakers, contains both expository and research papers by some of the best logicians in the world. The most topical areas of current research are covered: valued fields, Hrushovski constructions (from model theory), algorithmic randomness, relative computability (from computability theory), strong forcing axioms and cardinal arithmetic, large cardinals and determinacy (from set theory), as well as foundational topics such as algebraic set theory, reverse mathematics, and unprovability. This volume will be invaluable for experts as well as those interested in an overview of central contemporary themes in mathematical logic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.