This paper presents the development of a novel active visual measurement technique, laterally sampled white-light interferometry (L-SWLI), which is capable of real-time visual tracking of six-degree-of-freedom (6-DOF) rigid body motion with near-nanometer precision. The visual tracking system is integrated with a 6-DOF motion stage to realize an ultraprecision six-axis visual servo-control system. Contrary to conventional interferometric techniques, L-SWLI obtains the complete pose of the target object from a single image frame, therefore allowing real-time tracking. Six-DOF motions are obtained from measuring the fringe pattern on multiple surfaces of the object or from a single surface with additional information gained from conventional image-processing techniques. The feasibility of the visually servoed motion scheme was demonstrated on a micro cantilever. The cantilever was maneuvered in a three-dimensional space with near-nanometer motion resolution in all three translational axes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.