The Viability Assessment (VA) of the potential repository for high-level nuclear waste at Yucca Mountain, Nevada was completed [1]. In the VA design concept, a two-layer waste container provides the primary component of the engineered barrier system (EBS). The VA reference design specifies a 100-mm thick carbon steel as the outer barrier and a 20-mm thick Alloy 22 as the inner barrier. A stochastic simulation model was developed to analyze long-term performance of the waste package in the potential repository. The model was developed by incorporating the latest corrosion data and models for the candidate waste package materials and the information developed from the Waste Package Degradation Expert Elicitation (WPDEE) [2].The reference case results showed that only a small fraction of waste packages fail by localized corrosion (i.e., pit penetrations). The analysis also indicated the degradation mode that is most important to long-term waste package degradation is general corrosion (or passive dissolution) of the inner barrier under dripping conditions. However, the general corrosion rates for dripping conditions used in the analysis have a range over three to five orders of magnitude. This is due mainly to a lack of information on local chemical and electrochemical conditions on the inner barrier after the outer barrier breach. This paper discusses further the areas and issues that need improvement to reduce uncertainty in the waste package degradation analysis. It also discusses additional waste package degradation modes and associated processes that need to be included in the future analysis for the potential repository to enhance the confidence of the analysis.
Sensitivity analyses were conducted to evaluate the impact of a number of waste package and engineered barrier system (EBS) design options on long-term waste package degradation in the potential repository at Yucca Mountain, Nevada. The evaluations were performed by analyzing the waste package degradation in terms of the first breach and first pit-breach profiles with time. Results for each design option were assessed by comparing to results for the reference-case design. An important finding from the analyses is that the waste package lifetime could be extended substantially by limiting and delaying the contact of dripping water with the Alloy 22 corrosion resistant material (CRM) barrier. In the current model, this would keep the CRM barrier outside the conditions that makes the alloy susceptible to localized corrosion. Uncertainty in waste package degradation analysis would be reduced by improved understanding and characterization of the processes that create the local exposure condition on waste package.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.