The dissimilar channel angular pressing (DCAP) process by rolling was numerically modeled and analyzed by the rigid-plastic two-dimensional finite element method in order to optimize the strain state of the DCAP process. Three distinct deformation mechanics during DCAP by rolling includes rolling, bending, and shearing. AA 1100 aluminum alloy was selected as a model material for the analysis of DCAP process. Difference in the friction conditions between the upper and lower roll surfaces led to large variation of shear strain component throughout the thickness of sample. Strain accompanying bending turned out to be negligible because of a large radius of curvature by relatively large roll diameter. The concentrated shear deformation was monitored at the corner of the DCAP-channel where the abrupt change in the direction of material flow occurred. The strain state at the upper and lower surfaces was observed to vary strongly from that of the center layer of the sheet.
This paper is concerned with the pressure distribution along the die-powder interface in long parts. The pressure exerted on the interface at various points on the moving and stationary punch, and also on the sidewall of container was investigated by the finite element method. A plasticity theory describing asymmetric behavior of powdered metals in tension and compression was briefly summarized. The yield criterion applied to the sintered powdered metals had been modified for describing this asymmetric behavior. The material properties of copper powders under compaction were also briefly described for the completeness of the paper. The copper powders were selected as a model material in the present study. The main purpose of this study is to investigate the pressure distribution along the interface of tooling quantitatively by the finite element method so that the results could be applied usefully to the design of tooling, especially container design for powdered metal compaction. Geometrical condition for analysis was confined to the Class II components which is very long parts without steps. It was concluded from the simulation results that the pressure exerted on the moving punch increases sharply near the outer circumference of punch and the pressure on the sidewall decreases at a distance from moving punch to fixed punch. It was also seen from the simulation that the pressure on the stationary punch is not significantly built up and decreases toward outer periphery. These trends were seen amplified with severe frictional conditions imposed on the tooling and powder interface.
This paper is concerned with the analysis on the surface expansion of AA 2024 and AA 1100 aluminum alloys in backward extrusion process. Due to heavy surface expansion appeared usually in the backward can extrusion process, the tribological conditions along the interface between the material and the punch land are very severe. In the present study, the surface expansion is analyzed especially under various process conditions. The main goal of this study is to investigate the influence of degree of reduction in height, geometries of punch nose, friction and hardening characteristics of different aluminum alloys on the material flow and thus on the surface expansion on the working material. Two different materials are selected for investigation as model materials and they are AA 2024 and AA 1100 aluminum alloys. The geometrical parameters employed in analysis include punch corner radius and punch face angle. The geometry of punch follows basically the recommendation of ICFG and some variations of punch geometry are adopted to obtain quantitative information on the effect of geometrical parameters on material flow. Extensive simulation has been conducted by applying the rigid-plastic finite element method to the backward can extrusion process under different geometrical, material, and interface conditions. The simulation results are summarized in terms of surface expansion at different reduction in height, deformation patterns including pressure distributions along the interface between workpiece and punch, comparison of surface expansion between two model materials, geometrical and interfacial parametric effects on surface expansion, and load-stroke relationships. It has been concluded from the present study that the geometrical condition of punch is the most significant factor among the parameters employed in this study. It is also known from the simulation results that the difference in surface expansion according to different material properties is not more or less significant.
This paper deals with an analysis of material flow in an extrusion process with a divide flow. The billet material flows easily into the corners of the die cavity and/or the material flow is controlled by the help of the ratio in reduction area, thikness ratio of backward can thickness to forward can thickness. So the influences of this tool geometry and process condition on balanced material flow in a combined forward and backward can extrusion process are explained. The FEM simulation has been conducted in order to investigate the effect of process parameters such as thickness ratio on the material flow. Deformation pattern and flow characteristics were examined in terms of design parameters such as extruded length ratio etc. Based on the simulation results, die pressure exerted on the die-workpiece interface is calculated and anaylsied for safe tooling. Therefore the numerical simulation works provide a combined extrusion process of stable cold forging process planning to avoid the severe damages on the tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.