BackgroundDuring posttreatment surveillance of head and neck cancer patients, imaging is insufficiently accurate for the early detection of relapsing disease. Free circulating tumor DNA (ctDNA) may serve as a novel biomarker for monitoring tumor burden during posttreatment surveillance of these patients. In this exploratory study, we investigated whether low level ctDNA in plasma of head and neck cancer patients can be detected using Droplet Digital PCR (ddPCR).Methods
TP53 mutations were determined in surgically resected primary tumor samples from six patients with high stage (II-IV), moderate to poorly differentiated head and neck squamous cell carcinoma (HNSCC). Subsequently, mutation specific ddPCR assays were designed. Pretreatment plasma samples from these patients were examined on the presence of ctDNA by ddPCR using the mutation-specific assays. The ddPCR results were evaluated alongside clinicopathological data.ResultsIn all cases, plasma samples were found positive for targeted TP53 mutations in varying degrees (absolute quantification of 2.2–422 mutational copies/ml plasma). Mutations were detected in wild-type TP53 background templates of 7667–156,667 copies/ml plasma, yielding fractional abundances of down to 0.01%.ConclusionsOur results show that detection of tumor specific TP53 mutations in low level ctDNA from HNSCC patients using ddPCR is technically feasible and provide ground for future research on ctDNA quantification for the use of diagnostic biomarkers in the posttreatment surveillance of HNSCC patients.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-017-3424-0) contains supplementary material, which is available to authorized users.
In current molecular cancer diagnostics, using blood samples of cancer patients for the detection of genetic alterations in plasma (cell‐free) circulating tumor DNA (ctDNA) is an emerging practice. Since ctDNA levels in blood are low, highly sensitive Droplet Digital PCR (ddPCR) can be used for detecting rare mutational targets. In order to perform ddPCR on blood samples, a standardized procedure for processing and analyzing blood samples is necessary to facilitate implementation into clinical practice. Therefore, we assessed the technical sample workup procedure for ddPCR on blood plasma samples. Blood samples from healthy individuals, as well as lung cancer patients were analyzed. We compared different methods and protocols for sample collection, storage, centrifugation, isolation, and quantification. Cell‐free DNA (cfDNA) concentrations of several wild‐type targets and BRAF and EGFR‐mutant ctDNA concentrations quantified by ddPCR were primary outcome measurements. Highest cfDNA concentrations were measured in blood collected in serum tubes. No significant differences in cfDNA concentrations were detected between various time points of up to 24 h until centrifugation. Highest cfDNA concentrations were detected after DNA isolation with the Quick cfDNA Serum & Plasma Kit, while plasma isolation using the QIAamp Circulating Nucleic Acid Kit yielded the most consistent results. DdPCR results on cfDNA are highly dependent on multiple factors during preanalytical sample workup, which need to be addressed during the development of this diagnostic tool for cancer diagnostics in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.