In Hokkaido, northern Japan, there are 12 hybrid subsurface constructed wetlands (HSCWs) and most of them are treating high concentrated organic wastewater. One of these systems is an HSCW situated in Embetsu, northern Hokkaido and it has been in operation since November of 2006 to treat dairy milking parlor wastewater. The system is composed of two vertical flow beds and a horizontal flow bed. The inflow and the outflow's flow rates and pollutant concentrations and loads were extremely variable. Throughout its six years of operation, most of the pollutant removals were decently high. Removal efficiencies for COD, BOD 5 and SS were ranging in the 90%. Removal efficiencies for TN, NH 4 -N, and BOD 5 were improving because of the development of the soil ecosystem and the Phragmites australis community. However, the removal rates of TP were decreasing, presumably because of the declining adsorption ability. The accumulation of TP in the first and the second vertical beds had reached its plateau. Vertical beds had high removal efficiencies for TN, COD, BOD 5 and SS. These high removal rates of the first vertical bed may be caused from the efficient removal of solid material that is deposited as an organic layer of the first vertical bed. High NH 4 -N removal rates exerted by the second vertical bed may be due to the recycling of wastewater. In conclusion, the HSCW was working excellently for its six years of operation, and it could be concluded that it has not reached its life yet.
The performance of six multistage hybrid constructed wetland systems was evaluated. The systems were designed to treat four kinds of high-content wastewater: dairy wastewater (three systems, average inflow content 2,400-5,000 mg·COD l(-1), 3-6 years of operation); pig farm wastewater, including liquid food washing wastewater (one system, 9,500 mg·COD l(-1), 3 years); potato starch processing wastewater (one system, 20,000-60,000 mg·COD l(-1), 3 years); and wastewater containing pig farm swine urine (one system, 6,600 mg·COD l(-1), 2.8 years) (COD = chemical oxygen demand). The systems contained three or four vertical (V) flow beds with self-priming siphons and surface partitions and no or one horizontal (H) flow bed (three to five beds). In some V flow beds, treated effluents were recirculated (Vr) through the inlet to improve performance. Mean annual temperature was 5-8 °C at all locations. To overcome clogging due to the high load in a cold climate, we applied a safety bypass structure and floating cover material to the V flow beds. Calculated average oxygen transfer rates (OTRs) increased proportionally with the influent load, and the OTR value was Vr > V> H. The relations of load-OTR, COD-ammonium, and a Arrhenius temperature-dependent equation enable the basic design of a reed bed system.
The objective of this study was to evaluate performance of a hybrid constructed wetland (CW) built for high organic content piggery wastewater treatment in a cold region. The system consists of four vertical and one horizontal flow subsurface CWs. The wetland was built in 2009 and water quality was monitored from the outset. Average purification efficiency of this system was 95±5, 91±7, 89±8, 70±10, 84±15, 90±6, 99±2, and 93±16% for biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total carbon (TC), total nitrogen (TN), ammonium-N (NH4-N), total phosphorus (TP), total coliform (T. Coliform), and suspended solids (SS), respectively during August 2010-December 2013. Pollutant removal rate was 15±18 g m(-2) d(-1), 49±52 g m(-2) d(-1), 6±4 g m(-2) d(-1), 7±5 g m(-2) d(-1), and 1±1 g m(-2) d(-1) for BOD5, COD, TN, NH4-N, and TP, respectively. The removal efficiency of BOD5, COD, NH4-N, and SS improved yearly since the start of operation. With respect to removal of TN and TP, efficiency improved in the first three years but slightly declined in the fourth year. The system performed well during both warm and cold periods, but was more efficient in the warm period. The nitrate increase may be attributed to a low C/N ratio, due to limited availability of carbon required for denitrification.
This study evaluated the nitrogen compound removal efficiency of a hybrid subsurface constructed wetland, which began treating milking parlor wastewater in Hokkaido, northern Japan, in 2006. The wetland's overall removal rates of total nitrogen (TN) and ammonium (NH4(+)-N) improved after the second year of operation, and its rate of organic nitrogen (Org-N) removal was stable at 90% efficiency. Only nitrate (NO3(-)-N) levels were increased following the treatment. Despite increased NO3(-)-N (maximum of 3 mg-N/L) levels, TN removal rates were only slightly affected. Removal rates of TN and Org-N were highest in the first vertical bed. NH4(+)-N removal rates were highest in the second vertical bed, presumably due to water recirculation and pH adjustment. Concentrations of NO3(-)-N appeared when total carbon (TC) levels were low, which suggests that low TC prevented complete denitrification in the second vertical bed and the final horizontal bed. In practice, the beds removed more nitrogen than the amount theoretically removed by denitrification, as calculated by the amount of carbon removed from the system. This carbon-nitrogen imbalance may be due to other nitrogen transformation mechanisms, which require less carbon.
This study followed three field-scale hybrid subsurface flow constructed wetland (CW) systems constructed in Hokkaido, northern Japan: piggery O (2009), dairy G (2011), and dairy S (2006). Treatment performance was monitored from the outset of operation for each CW. The ranges of overall purification efficiency for these systems were 70-86%, 40-85%, 71-90%, 91-96%, 94-98%, 84-97%, and 70-97% for total N (TN), NH-N, total P, chemical oxygen demand (COD), biochemical oxygen demand, suspended solid, and total Coliform, respectively. The hybrid system's removal rates were highest when influent loads were high. COD removal rates were 46.4 ± 49.2, 94.1 ± 36.6, and 25.1 ± 15.5 g COD m d in piggery O, dairy G, and dairy S, with average influent loads of 50.5 ± 51.5, 98.9 ± 37.1, and 26.9 ± 16.0 g COD m d, respectively. The systems had overall COD removal efficiencies of around 90%. TN removal efficiencies were 62 ± 19%, 82 ± 9%, and 82 ± 15% in piggery O, dairy G, and dairy S, respectively. NH-N removal efficiency was adversely affected by the COD/TN ratio. Results from this study prove that these treatment systems have sustained and positive pollutant removal efficiencies, which were achieved even under extremely cold climate conditions and many years after initial construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.