Melanoma is one of the most aggressive types of cancer and resection of the tumour prior to dissemination of tumour cells is still the most effective treatment. Therefore, early diagnosis of melanocytic lesions is important and identification of novel (molecular) markers would be helpful to improve diagnosis. Moreover, better understanding of molecular targets involved in melanocytic tumorigenesis could possibly lead to development of novel interventions. In this study, we used a custom made oligonucleotide array containing 298 genes that were previously found to be differentially expressed in human melanoma cell lines 1F6 (rarely metastasising) and Mel57 (frequently metastasising). We determined differential gene expression in human common nevocellular nevus and melanoma metastasis lesions. By performing nine dye-swap array experiments, using individual as well as pooled melanocytic lesions, a constant differential expression could be detected for 25 genes in eight out of nine or nine out of nine array analyses. For at least nine of these genes, namely THBD, FABP7, H2AFJ, RRAGD, MYADM, HR, CKS2, NCK2 and GDF15, the differential expression found by array analyses could be verified by semiquantitative and/or real-time quantitative RT -PCR. The genes that we identified to be differentially expressed during melanoma progression could be potent targets for diagnostic, prognostic and/ or therapeutic interventions.
Purpose: To identify the biochemical and molecular genetic defect in a 16-year-old patient presenting with apical hypertrophic cardiomyopathy and neuropathy suspected for a mitochondrial disorder. Methods: Measurement of the mitochondrial energygenerating system (MEGS) capacity in muscle and enzyme analysis in muscle and fibroblasts were performed. Relevant parts of the mitochondrial DNA were analysed by sequencing. Transmitochondrial cybrids were obtained by fusion of 143B206 TK 2 rho zero cells with patient-derived enucleated fibroblasts. Immunoblotting techniques were applied to study the complex V assembly. Results: A homoplasmic nonsense mutation m.8529GRA (p.Trp55X) was found in the mitochondrial ATP8 gene in the patient's fibroblasts and muscle tissue. Reduced complex V activity was measured in the patient's fibroblasts and muscle tissue, and was confirmed in cybrid clones containing patient-derived mitochondrial DNA. Immunoblotting after blue native polyacrylamide gel electrophoresis showed a lack of holocomplex V and increased amounts of mitochondrial ATP synthase subcomplexes. An in-gel activity assay of ATP hydrolysis showed activity of free F 1 -ATPase in the patient's muscle tissue and in the cybrid clones. Conclusion: We describe the first pathogenic mutation in the mitochondrial ATP8 gene, resulting in an improper assembly and reduced activity of the complex V holoenzyme.Mitochondrial (mt) ATP synthase, or complex V (EC 3.6.3.14), uses the proton gradient provided by the activity of the respiratory chain enzymes complexes I, III and IV for ATP synthesis, thereby generating .95% of cellular ATP.
Although the number of patients in this study is limited, the presence of disseminated tumour cells did not predict subsequent extrahepatic recurrence. The results strongly suggest that the presence of circulating tumour cells in peripheral blood may reflect transient shedding of tumour cells related to large tumour volume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.