In this paper we show how recurrent neural network (RNN) convolutional decoders can be derived. As an example, we derive the RNN decoder for 1/2 rate code with constraint length S. The derived RNN decoder is tested in Gaussian channel and the results are compared to results of optimal Viterbi decoder. Some simulation results for other constraint length codes are also given. The RNN decoder is tested also with the punctured code. It is seen that RNN decoder can achieve the performance of the Viterbi decoder. The complexity of the RNN decoder seems to increase only polynomially, while in Viterbi algorithm the increase is exponential. Also, the hardware implementation of the proposed RNN decoder is feasible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.