A half-metal has been defined as a material with propagating electron states at the Fermi energy only for one of the two possible spin projections, and as such has been promoted as an interesting research direction for spin electronics. This review details recent advances on manganite thin film research within the field of spintronics, before presenting the structural, electronic and spin-polarized solid-state tunnelling transport studies that we have performed on heterostructures involving La(2/3)Sr(1/3)MnO(3) thin films separated by SrTiO(3) barriers. These experiments demonstrate that, with a polarization of spin [Formula: see text] electrons at the Fermi level that can reach 99%, the La(2/3)Sr(1/3)MnO(3)/SrTiO(3) interface for all practical purposes exhibits half-metallic behaviour. We offer insight into the electronic structure of the interface, including the electronic symmetry of any remaining spin [Formula: see text] states at the Fermi level. Finally, we present experiments that use the experimental half-metallic property of manganites as tools to reveal novel features of spintronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.