BACKGROUND Resistance to therapy with BRAF kinase inhibitors is associated with reactivation of the mitogen-activated protein kinase (MAPK) pathway. To address this problem, we conducted a phase 1 and 2 trial of combined treatment with dabrafenib, a selective BRAF inhibitor, and trametinib, a selective MAPK kinase (MEK) inhibitor. METHODS In this open-label study involving 247 patients with metastatic melanoma and BRAF V600 mutations, we evaluated the pharmacokinetic activity and safety of oral dabrafenib (75 or 150 mg twice daily) and trametinib (1, 1.5, or 2 mg daily) in 85 patients and then randomly assigned 162 patients to receive combination therapy with dabrafenib (150 mg) plus trametinib (1 or 2 mg) or dabrafenib monotherapy. The primary end points were the incidence of cutaneous squamous-cell carcinoma, survival free of melanoma progression, and response. Secondary end points were overall survival and pharmacokinetic activity. RESULTS Dose-limiting toxic effects were infrequently observed in patients receiving combination therapy with 150 mg of dabrafenib and 2 mg of trametinib (combination 150/2). Cutaneous squamous-cell carcinoma was seen in 7% of patients receiving combination 150/2 and in 19% receiving monotherapy (P = 0.09), whereas pyrexia was more common in the combination 150/2 group than in the monotherapy group (71% vs. 26%). Median progression-free survival in the combination 150/2 group was 9.4 months, as compared with 5.8 months in the monotherapy group (hazard ratio for progression or death, 0.39; 95% confidence interval, 0.25 to 0.62; P<0.001). The rate of complete or partial response with combination 150/2 therapy was 76%, as compared with 54% with monotherapy (P = 0.03). CONCLUSIONS Dabrafenib and trametinib were safely combined at full monotherapy doses. The rate of pyrexia was increased with combination therapy, whereas the rate of proliferative skin lesions was nonsignificantly reduced. Progression-free survival was significantly improved. (Funded by GlaxoSmithKline; ClinicalTrials.gov number, NCT01072175.)
Purpose Tolerability, pharmacokinetics (PK), pharmacodynamics, and antitumor activity of carfilzomib, a selective proteasome inhibitor, administered twice weekly by 2–10-min intravenous (IV) infusion on days 1, 2, 8, 9, 15, and 16 in 28-day cycles, were assessed in patients with advanced solid tumors in this phase I/II study. MethodsAdult patients with solid tumors progressing after ≥1 prior therapies were enrolled. The dose was 20 mg/m2 in week 1 of cycle 1 and 20, 27, or 36 mg/m2 thereafter. The maximum tolerated dose or protocol-defined maximum planned dose (MPD) identified during dose escalation was administered to an expansion cohort and to patients with small cell lung, non-small cell lung, ovarian, and renal cancer in phase II tumor-specific cohorts.ResultsFourteen patients received carfilzomib during dose escalation. The single dose-limiting toxicity at 20/36 mg/m2 was grade 3 fatigue, establishing the MPD as the expansion and phase II dose. Sixty-five additional patients received carfilzomib at the MPD. Adverse events included fatigue, nausea, anorexia, and dyspnea. Carfilzomib PK was dose proportional with a half-life <1 h. All doses resulted in at least 80 % proteasome inhibition in blood. Partial responses occurred in two patients in phase I, with 21.5 % stable disease after four cycles in evaluable patients in the expansion and phase II cohorts.ConclusionCarfilzomib 20/36 mg/m2 was well tolerated when administered twice weekly by 2–10-min IV infusion. At this dose and infusion rate, carfilzomib inhibited the proteasome in blood but demonstrated limited antitumor activity in patients with advanced solid tumors.
The application of modeling and simulation techniques is increasingly common in the preclinical stages of the drug development process.is a potent second-generation antagonist of inhibitor of apoptosis (IAP) proteins that is being developed for the treatment of various cancers. GDC-0917 has low to moderate clearance in the mouse (12.0 ml/min/ kg), rat (27.0 ml/min/kg), and dog (15.3 ml/min/kg), and high clearance in the monkey (67.6 ml/min/kg). Accordingly, oral bioavailability was lowest in monkeys compared with other species. Based on our experience with a prototype molecule with similar structure, in vitroin vivo extrapolation was used to predict a moderate clearance (11.5 ml/min/kg) in humans. The predicted human volume of distribution was estimated using simple allometry at 6.69 l/kg. Translational pharmacokinetic-pharmacodynamic (PK-PD) analysis using results from MDA-MB-231-X1.1 breast cancer xenograft studies and predicted human pharmacokinetics suggests that ED 50 and ED 90 targets can be achieved in humans using acceptable doses (72 mg and 660 mg, respectively) and under an acceptable time frame. The relationship between GDC-0917 concentrations and pharmacodynamic response (cIAP1 degradation) was characterized using an in vitro peripheral blood mononuclear cell immunoassay. Simulations of human GDC-0917 plasma concentration-time profile and cIAP1 degradation at the 5-mg starting dose in the phase 1 clinical trial agreed well with observations. This work shows the importance of leveraging information from prototype molecules and illustrates how modeling and simulation can be used to add value to preclinical studies in the early stages of the drug development process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.