In this paper, we propose an approach towards predicting the trend of stock price values by analyzing the relevant words occurring in social media like Twitter and by performing a time series analysis of the performance of the stock over the years. We obtain training data and train them separately against normalized values of stock prices themselves using neural networks and obtain the desired results by using the outputs of these separate approaches as the training data for another separate neural network that predicts the trend in the stock's future pricing along with the values with a certain degree of accuracy.
Background Subtraction of a foreground object in multimedia is one of the major preprocessing steps involved in many vision-based applications. The main logic for detecting moving objects from the video is difference of the current frame and a reference frame which is called “background image” and this method is known as frame differencing method. Background Subtraction is widely used for real-time motion gesture recognition to be used in gesture enabled items like vehicles or automated gadgets. It is also used in content-based video coding, traffic monitoring, object tracking, digital forensics and human-computer interaction. Now-a-days due to advent in technology it is noticed that most of the conferences, meetings and interviews are done on video calls. It’s quite obvious that a conference room like atmosphere is not always readily available at any point of time. To eradicate this issue, an efficient algorithm for foreground extraction in a multimedia on video calls is very much needed. This paper is not to just build Background Subtraction application for Mobile Platform but to optimize the existing OpenCV algorithm to work on limited resources on mobile platform without reducing the performance. In this paper, comparison of various foreground detection, extraction and feature detection algorithms are done on mobile platform using OpenCV. The set of experiments were conducted to appraise the efficiency of each algorithm over the other. The overall performances of these algorithms were compared on the basis of execution time, resolution and resources required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.