Context. The Vela-Puppis region is known to host the Vela OB2 association as well as several young clusters featuring OB and premain-sequence stars. Several spatial and kinematic subgroups have been identified in recent years. Aims. By grouping stars based on their positions and velocity, we can address the question of the dynamical history of the region and the mechanisms that drove stellar formation. The Gaia DR2 astrometry and photometry enables us to characterise the 3D spatial and 3D kinematic distribution of young stars and to estimate the ages of the identified components. Methods. We used an unsupervised classification method to group stars based on their proper motions and parallax. We studied the expansion rates of the different identified groups based on 3D velocities and on corrected tangential velocities. We used theoretical isochrones to estimate ages. Results. The young stars can be separated into seven main groups of different ages and kinematical distribution. All groups are found to be expanding, although the expansion is mostly not isotropic. Conclusions. The size of the region, the age substructure, and the anisotropic expansion rates are compatible with a prolonged period of star formation in a turbulent molecular cloud. The current kinematics of the stars cannot be explained by internal processes alone (such as gas expulsion). Key words. open clusters and associations: individual: Vela OB2 -open clusters and associations: individual: Trumpler 10open clusters and associations: individual: NGC 2547 -open clusters and associations: individual: NGC 2451Bstars: pre-main sequence Article published by EDP Sciences A17, page 1 of 18 A&A 626, A17 (2019)
The kinematics of low-mass stars in nearby OB associations can provide clues about their origins and evolution. Combining the precise positions, proper motions and parallaxes given in the second Gaia Data Release with radial velocity measurements obtained with the Hermes spectrograph at the Anglo-Australian Telescope, we have an opportunity to study in detail the kinematics of low-mass stars belonging to the nearby γ Vel cluster and the Vela OB2 association it is projected against. The presence of lithium is used to confirm the youth of our targets. We separate our sample into the cluster and association populations based on the membership probabilities of Jeffries et al. (2014), their parallaxes, and kinematics. We find strong evidence for expansion in the OB association population with at least 4σ significance along all three axes, though the expansion is notably anisotropic. We discuss these results in the context of cluster and association dispersal theories.
The first Gaia Data Release presents an opportunity to characterise the low-mass population of OB associations, providing larger statistical samples and better constraints on the formation and evolution of clusters and associations. Using previously known low mass members in a small region of Vela OB2 we have designed selection criteria that combine Gaia and 2MASS photometry, independently of any astrometric information, to identify low-mass pre-main-sequence (PMS) stars over the wider association area. Our method picks out the known clusters of young stars around γ 2 Velorum and NGC-2547, but also identifies other over-densities that may represent previously unknown clusters. There are clear differences in the spatial distributions of the low-mass and the high-mass OB populations, suggesting either that the structure and dynamics of these populations has evolved separately or that the initial mass function can vary considerably on small scales within a single association.
The kinematics of stars in OB associations can provide insights into their formation, dynamical evolution, and eventual fate. The low-mass stellar content of OB associations are sufficiently numerous as to provide a detailed sampling of their kinematic properties, however spectroscopy is required to confirm the youth of individual stars and to get 3D kinematics. In this paper we present and analyse results from a large spectroscopic survey of Vela OB2 conducted using 2dF/HERMES on the AAT. This spectroscopy is used to confirm the youth of candidate young stars and determine radial velocities, which are combined with proper motions and parallaxes from Gaia to measure 3-dimensional positions and velocities. We identify multiple separate kinematic groups in the region, for which we measure velocity dispersions and infer their virial states. We measure expansion rates for all these groups and find strong evidence for anisotropic expansion in the Vela OB2 association of at least 11σ significance in all three dimensions, as well as some evidence for expansion in the γ Vel and P Puppis clusters. We trace back the motions of these groups into the past and find that the open cluster NGC 2547 is an interloper in the Vela OB2 region and actually formed >100 pc away from the association. We conclude that Vela OB2 must have formed with considerable spatial and kinematic substructure over a timescale of ∼10 Myr, with clear temporal substructure within the association, but no clear evidence for an age gradient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.