Objectives To provide direct estimates of risk of cancer after protracted low doses of ionising radiation and to strengthen the scientific basis of radiation protection standards for environmental, occupational, and medical diagnostic exposures. Design Multinational retrospective cohort study of cancer mortality. Setting Cohorts of workers in the nuclear industry in 15 countries. Participants 407 391 workers individually monitored for external radiation with a total follow-up of 5.2 million person years. Main outcome measurements Estimates of excess relative risks per sievert (Sv) of radiation dose for mortality from cancers other than leukaemia and from leukaemia excluding chronic lymphocytic leukaemia, the main causes of death considered by radiation protection authorities. Results The excess relative risk for cancers other than leukaemia was 0.97 per Sv, 95% confidence interval 0.14 to 1.97. Analyses of causes of death related or unrelated to smoking indicate that, although confounding by smoking may be present, it is unlikely to explain all of this increased risk. The excess relative risk for leukaemia excluding chronic lymphocytic leukaemia was 1.93 per Sv ( < 0 to 8.47). On the basis of these estimates, 1-2% of deaths from cancer among workers in this cohort may be attributable to radiation. Conclusions These estimates, from the largest study of nuclear workers ever conducted, are higher than, but statistically compatible with, the risk estimates used for current radiation protection standards. The results suggest that there is a small excess risk of cancer, even at the low doses and dose rates typically received by nuclear workers in this study.
Studies of the mortality among nuclear industry workforces have been carried out, and nationally combined analyses performed, in the U.S., the UK and Canada. This paper presents the results of internationally combined analyses of mortality data on 95,673 workers (85.4% men) monitored for external exposure to ionizing radiation and employed for 6 months or longer in the nuclear industry of one of the three countries. These analyses were undertaken to obtain a more precise direct assessment of the carcinogenic effects of protracted low-level exposure to external, predominantly gamma, radiation. The combination of the data from the various studies increases the power to study associations between radiation and specific cancers. The combined analyses covered a total of 2,124,526 person-years (PY) at risk and 15,825 deaths, 3,976 of which were due to cancer. There was no evidence of an association between radiation dose and mortality from all causes or from all cancers. Mortality from leukemia, excluding chronic lymphocytic leukemia (CLL)--the cause of death most strongly and consistently related to radiation dose in studies of atomic bomb survivors and other populations exposed at high dose rates--was significantly associated with cumulative external radiation dose (one-sided P value = 0.046; 119 deaths). Among the 31 other specific types of cancer studied, a significant association was observed only for multiple myeloma (one-sided P value = 0.037; 44 deaths), and this was attributable primarily to the associations reported previously between this disease and radiation dose in the Hanford (U.S.) and Sellafield (UK) cohorts. The excess relative risk (ERR) estimates for all cancers excluding leukemia, and leukemia excluding CLL, the two main groupings of causes of death for which risk estimates have been derived from studies of atomic bomb survivors, were -0.07 per Sv [90% confidence interval (CI): -0.4, 0.3] and 2.18 per Sv (90% CI: 0.1, 5.7), respectively. These values correspond to a relative risk of 0.99 for all cancers excluding leukemia and 1.22 for leukemia excluding CLL for a cumulative protracted dose of 100 mSv compared to 0 mSv. These estimates, which did not differ significantly across cohorts or between men and women, are the most comprehensive and precise direct estimates of cancer risk associated with low-dose protracted exposures obtained to date. Although they are lower than the linear estimates obtained from studies of atomic bomb survivors, they are compatible with a range of possibilities, from a reduction of risk at low doses, to risks twice those on which current radiation protection recommendations are based.(ABSTRACT TRUNCATED AT 400 WORDS)
Workers employed in 15 utilities that generate nuclear power in the United States have been followed for up to 18 years between 1979 and 1997. Their cumulative dose from whole body ionizing radiation has been determined from the dose records maintained by the facilities themselves and the REIRS and REMS systems maintained by the Nuclear Regulatory Commission and the Department of Energy, respectively. Mortality in the cohort from a number of causes has been analyzed with respect to individual radiation doses. The cohort displays a very substantial healthy worker effect, i.e. considerably lower cancer and noncancer mortality than the general population. Based on 26 and 368 deaths, respectively, positive though statistically nonsignificant associations were seen for mortality from leukemia (excluding chronic lymphocytic leukemia) and all solid cancers combined, with excess relative risks per sievert of 5.67 [95% confidence interval (CI) -2.56, 30.4] and 0.506 (95% CI -2.01, 4.64), respectively. These estimates are very similar to those from the atomic bomb survivors study, though the wide confidence intervals are also consistent with lower or higher risk estimates. A strong positive and statistically significant association between radiation dose and deaths from arteriosclerotic heart disease including coronary heart disease was also observed in the cohort, with an ERR of 8.78 (95% CI 2.10, 20.0). While associations with heart disease have been reported in some other occupational studies, the magnitude of the present association is not consistent with them and therefore needs cautious interpretation and merits further attention. At present, the relatively small number of deaths and the young age of the cohort (mean age at end of follow-up is 45 years) limit the power of the study, but further follow-up and the inclusion of the present data in an ongoing IARC combined analysis of nuclear workers from 15 countries will have greater power for testing the main hypotheses of interest.
The Mayak Production Association (MPA) was the first plutonium production plant in the former Soviet Union. Workers at the MPA were exposed to relatively large internal radiation intakes and external radiation exposures, particularly in the early years of plant operations. This paper describes the updated dosimetry database, "Doses-2005." Doses-2005 represents a significant improvement in the determination of absorbed organ dose from external radiation and plutonium intake for the original cohort of 18,831 Mayak workers. The methods of dose reconstruction of absorbed organ doses from external radiation uses: 1) archive records of measured dose and worker exposure history, 2) measured energy and directional response characteristics of historical Mayak film dosimeters, and 3) calculated dose conversion factors for Mayak Study-defined exposure scenarios using Monte Carlo techniques. The methods of dose reconstruction for plutonium intake uses two revised models developed from empirical data derived from bioassay and autopsy cases and/or updates from prevailing or emerging International Commission on Radiological Protection models. Other sources of potential significant exposure to workers such as medical diagnostic x-rays, ambient onsite external radiation, neutron radiation, intake of airborne effluent, and intake of nuclides other than plutonium were evaluated to determine their impact on the dose estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.