We use a modified outer-gap model to study the multifrequency phase-resolved spectra of the Crab pulsar. The emissions from both poles contribute to the light curve and the phase-resolved spectra. Using the synchrotron selfCompton mechanism and by considering the incomplete conversion of curvature photons into secondary pairs, the observed phase-averaged spectrum from 100 eV to 10 GeV can be explained very well. The predicted phase-resolved spectra can match the observed data reasonably well, too. We find that the emission from the north pole mainly contributes to leading wing 1. The emissions in the remaining phases are mainly dominated by the south pole. The widening of the azimuthal extension of the outer gap explains trailing wing 2. The complicated phase-resolved spectra for the phases between the two peaks, namely, trailing wing 1, the bridge, and leading wing 2, strongly suggest that there are at least two well-separated emission regions with multiple emission mechanisms-synchrotron radiation, inverse Compton scattering, and curvature radiation. Our best-fit results indicate that there may exist some asymmetry between the south and north poles. Our model predictions can be examined with GLAST.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.