The C4 isoform of phosphoenolpyruvate carboxylase (PEPCase) in Flaveria trinervia is encoded by the ppcA subgroup of the PEPCase gene family and is abundantly expressed in the mesophyll cells of leaves. The homologous ppcA genes in the C3 plant F pringlei are only weakly expressed and their transcripts do not show the strictly leaf-specific accumulation pattern observed for the F. trinervia genes. Two representative members of the ppcA subfamilies of F. trinervia (C4) and F. pringeli (C3)-named ppcA1-were characterized by Southern blotting, nucleotide sequencing and primer extension analysis. Comparison of the deduced amino acid sequences reveals a close similarity between C4 and C3 isoforms. Only few C4-specific positions can be detected when all known plant PEPCases are included in the comparison. A regulatory domain involved in light-dependent phosphorylation/dephosphorylation of the C4 and crassulacean acid metabolism (CAM) isoforms is present in the ppcA1 gene products of both the C3 and C4 Flaveria. The 5' flanking regions are essentially homologous. The putative promoter regions share several identical sequence motifs (CCAAT, AT-1 and GT-1 box III/III* elements). Additionally, alterations in elements that could contribute to differences in expression rates and light regulation are found. The significance of these findings is discussed with respect to the molecular evolution of C4 photosynthesis in Flaveria.
In small arteries, a chronic blood flow reduction leads to inward hypotrophic remodeling, while a chronic blood flow elevation induces outward hypertrophic remodeling. The RhoA/Rho kinase system was shown to be modulated by shear stress, and to be involved in other kinds of vascular remodeling. The aim of this study was to investigate the role of RhoA/Rho kinase in flow-related small artery remodeling. Rat mesenteric small arteries were subjected to flow-modifying surgery. After 1, 2, 4, 16, and 32 days, the animals were sacrificed and small arteries were harvested. Messenger RNA was isolated and amplified. Using cDNA microarray analysis, the differential expression of >14,000 genes was analyzed, part of which was confirmed by RT-PCR. In vivo treatment with fasudil (3 mg/kg/day s.c.) was used to test the effect of Rho kinase inhibition. The main findings are that: (1) blood flow alteration modified the expression of approximately 5% of the genes by >2-fold, (2) flow reduction downregulated many RhoA-related cytoskeletal markers of smooth muscle cell phenotype, (3) many RhoA-related genes were rapidly (<1 day) regulated and (4) fasudil treatment potentiated the inward hypotrophic remodeling in response to chronically reduced flow. These results indicate the importance of the RhoA/Rho kinase system in flow-related small artery remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.