In small arteries, a chronic blood flow reduction leads to inward hypotrophic remodeling, while a chronic blood flow elevation induces outward hypertrophic remodeling. The RhoA/Rho kinase system was shown to be modulated by shear stress, and to be involved in other kinds of vascular remodeling. The aim of this study was to investigate the role of RhoA/Rho kinase in flow-related small artery remodeling. Rat mesenteric small arteries were subjected to flow-modifying surgery. After 1, 2, 4, 16, and 32 days, the animals were sacrificed and small arteries were harvested. Messenger RNA was isolated and amplified. Using cDNA microarray analysis, the differential expression of >14,000 genes was analyzed, part of which was confirmed by RT-PCR. In vivo treatment with fasudil (3 mg/kg/day s.c.) was used to test the effect of Rho kinase inhibition. The main findings are that: (1) blood flow alteration modified the expression of approximately 5% of the genes by >2-fold, (2) flow reduction downregulated many RhoA-related cytoskeletal markers of smooth muscle cell phenotype, (3) many RhoA-related genes were rapidly (<1 day) regulated and (4) fasudil treatment potentiated the inward hypotrophic remodeling in response to chronically reduced flow. These results indicate the importance of the RhoA/Rho kinase system in flow-related small artery remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.