In this study we evaluated for a realistic head model the 3D temperature rise induced by a mobile phone. This was done numerically with the consecutive use of an FDTD model to predict the absorbed electromagnetic power distribution, and a thermal model describing bioheat transfer both by conduction and by blood flow. We calculated a maximum rise in brain temperature of 0.11 degrees C for an antenna with an average emitted power of 0.25 W, the maximum value in common mobile phones, and indefinite exposure. Maximum temperature rise is at the skin. The power distributions were characterized by a maximum averaged SAR over an arbitrarily shaped 10 g volume of approximately 1.6 W kg(-1). Although these power distributions are not in compliance with all proposed safety standards, temperature rises are far too small to have lasting effects. We verified our simulations by measuring the skin temperature rise experimentally. Our simulation method can be instrumental in further development of safety standards.
The interaction between the magnetic field and secondary electrons in the air around the chamber reduces the charge collected from 0.7% to 1.2%. The large angular dependence of ion chambers measured in the plastic phantom in a magnetic field appears to arise from a change of air distribution as the chamber is moved within the insert, rather than an intrinsic isotropy of the chamber sensitivity to radiation. It is recommended that reference dosimetry measurements on the MR-linac can be performed only in water, rather than in existing plastic phantoms.
Introduction of hypothermia therapy as a neuroprotection therapy after hypoxia-ischemia in newborn infants requires appraisal of cooling methods. In this numerical study thermal simulations were performed to test the hypothesis that cooling of the surface of the cranium by the application of a cooling bonnet significantly reduces deep brain temperature and produces a temperature differential between the deep brain and the body core. A realistic threedimensional (3-D) computer model of infant head anatomy was used, derived from magnetic resonance data from a newborn infant. Temperature distributions were calculated using the Pennes heatsink model. The cooling bonnet was at a constant temperature of 10°C. When modeling head cooling only, a constant body core temperature of 37°C was imposed. The computed result showed no significant cooling of the deep brain regions, only the very superficial regions of the brain are cooled to temperatures of 33-34°C. Poor
The verification of thermal models for use in hyperthermia treatment planning is essential. We investigated the heat transfer between a single vessel and the surrounding vascularised tissue, comparing the conventional bioheat transfer theory and the recently developed keff model using analytical and numerical methods. A plastic tube inserted into the tissue of an isolated perfused organ served as an artificial vessel. This enabled us to vary the blood flow in the vessel and in the tissue independently. The organ used was a bovine kidney, turned into a perfused tissue phantom using an alcohol fixation technique. The temperature profile within the tissue was mapped with constantan-manganin thermocouple wire sensors with a total diameter of 50 microns. The temperature profile relative to the temperature difference between the vessel and organ was measured; increased perfusion caused a reduction of the vessel wall temperature but did not affect the width of the profile. Studying the transient tissue temperature after a step-wise change of the blood temperature in the vessel revealed a faster diffusion of heat at higher perfusion rates. These facts are in accordance with the keff model, but not with the conventional heat-sink theory.
A three-dimensional (3-D) model is presented for the calculation of the specific absorption rate (SAR) in human tissue during current source interstitial hyperthermia. The model is capable of millimeter resolution and can cope with irregular implants in heterogeneous tissue. The SAR distribution is calculated from the electrical potential. The potential distribution is determined by the dielectric properties of the tissue and by the electrode configuration. The dielectric properties and the current injection of the electrodes are represented on a 3-D uniform grid. The calculated potential at an electrode current injection point is not the actual electrode potential at that point. To estimate this potential a grid independent representation of an electrode together with an analytical solution in the neighborhood of the electrode are used. The calculated potential on the electrode surface is used to estimate the electrode impedance. The tissue implementation is validated by comparing calculated distributions with analytical solutions. The electrode implementation is verified by comparing different discretizations of an electrode configuration and by comparing numerically calculated electrode impedances with analytically calculated impedances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.