The shape of coherent SiGe islands epitaxially grown on pit-patterned Si(001) substrates displays very uniform collective oscillations with increasing Ge deposition, transforming cyclically between shallower ''dome'' and steeper ''barn'' morphologies. Correspondingly, the average Ge content in the alloyed islands also displays an oscillatory behavior, superimposed on a progressive Si enrichment with increasing size. We show that such a growth mode, remarkably different from the flat-substrate case, allows the islands to keep growing in size while avoiding plastic relaxation.
In this work self-organized SiGe islands are used as stressors for Si capping layers, which later act as carrier channels in field effect transistors. To be able to address individual islands and to obtain a sufficiently narrow distribution of their properties, the SiGe islands are grown by molecular beam epitaxy on prepatterned Si substrates, with a regular two-dimensional array of pits. This combination of lithographic patterning and self-assembled island growth combines the advantages of both approaches and leads to very homogeneous island shape, size, and chemical composition. For processing, 4in. wafers are used, and fields with pit periods between 600 and 1000nm are defined by optical lithography. After growth of a Si buffer layer several monolayers of Ge are deposited, leading to island formation (dome or barn shaped) in the pits. Subsequent Si capping is performed at a low substrate temperature of 300°C to avoid intermixing and shape changes of the buried islands. The Ge distribution in the buried islands and the strain distribution in the islands and the surrounding Si matrix are assessed by x-ray diffraction experiments, combined with three-dimensional model simulations using finite elements. Tensile strain values in the Si cap up to 8×10−3 can be achieved using this approach, which is difficult to achieve using other methods without introduction of dislocations.
Abstract.We report on studies of strain and composition of two-dimensionally ordered SiGe islands grown by molecular beam epitaxy using high resolution x-ray diffraction. To ensure a small size distribution of the islands, pit-patterned 4 (001) Si wafers were used as substrates. The Si wafers were patterned by optical lithography and reactive ion etching. The pits for island growth are ordered in regular 2D arrays with periods ranging from 500 to 1000 nm along two orthogonal 110 directions. After the growth of a Si buffer layer, 5 to 9 monolayers of Ge are deposited, leading to the formation of islands with either dome-or barn shape, depending on the number of monolayers deposited. The Si capping of the islands is performed at low temperatures (300• C) to avoid intermixing and thus strain relaxation. Information on the surface morphology obtained by atomic force microscopy (AFM) was used to set up models for three-dimensional Finite Element Method (FEM) simulations of the islands including the patterned Si substrate. In the model, special attention was given to the non uniform distribution of the Ge content within the islands. The FEM results served as an input for calculating the diffracted x-ray intensities using kinematical scattering theory. Reciprocal space maps around the vicinity of symmetric (004) and asymmetric (113) and (224) Bragg peaks were recorded in coplanar geometry. Simulating different germanium gradients leads to altered scattered intensity distribution and consequently information on this quantity is obtained for both dome-and barn-shaped islands as well as on the strain fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.