Visual performance is better in the lower visual hemifield than in the upper field for many classes of stimuli. The origin of this difference is unclear. One theory associates it with finer-grained attention in the lower field, an idea consistent with a change in relative efficacy with task difficulty. The first experiment in this study confirmed a lower hemifield advantage for discriminating a range of stimuli, including those that differ in contrast, hue, and motion. An identical paradigm revealed an upper field advantage when stimuli differed in their apparent distances from the observer. Presentations of stimuli in the upper or lower hemifield were interlaced to reduce the likelihood of possible artifacts or biases. A second experiment varied the difficulty of these discriminations, showing that difficulty does not determine field preference. Thus, an attentional mechanism is not a likely explanation for these preferences.
These results demonstrate that cone- and rod-pathway contributions are more predominant than melanopsin contribution to the phasic pupil response. The combined rod, cone, and melanopsin inputs to the phasic state of the pupil light reflex follow linear summation.
The International Society for Clinical Electrophysiology of Vision (ISCEV) Standard for full-field electroretinography (ERG) describes a minimum procedure, but encourages more extensive testing. This ISCEV extended protocol describes an extension to the ERG Standard, namely the photopic negative response (PhNR) of the light-adapted flash ERG, as a well-established technique that is broadly accepted by experts in the field. The PhNR is a slow negative-going wave after the b-wave that provides information about the function of retinal ganglion cells and their axons. The PhNR can be reduced in disorders that affect the innermost retina, including glaucoma and other forms of optic neuropathy. This document, based on existing literature, provides a protocol for recording and analyzing the PhNR in response to a brief flash. The protocol includes full-field stimulation, a frequency bandwidth of the recording in which the lower limit does not exceed 0.3 Hz, and a spectrally narrowband stimulus, specifically, a red flash on a rod saturating blue background. Suggested flash strengths cover a range up to and including the minimum required to elicit a maximum amplitude PhNR. This extended protocol for recording the PhNR provides a simple test of generalized retinal ganglion cell function that could be added to standard ERG testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.