The human ether-a-go-go-related gene potassium channel (hERG, Kv11.1, KCNH2) has an essential role in cardiac action potential repolarization. Electrical dysfunction of the voltage-sensitive ion channel is associated with potentially lethal ventricular arrhythmias in humans. hERG K + channels are also expressed in a variety of cancer cells where they control cell proliferation and apoptosis. In this review, we discuss molecular mechanisms of hERG-associated cell cycle regulation and cell death. In addition, the significance of hERG K + channels as future drug target in anticancer therapy is highlighted.
Glioblastoma (GB) is associated with poor patient survival owing to uncontrolled tumor proliferation and resistance to apoptosis. Human ether-a-go-go-related gene K+ channels (hERG; Kv11.1, KCNH2) are expressed in multiple cancer cells including GB and control cell proliferation and death. We hypothesized that pharmacological targeting of hERG protein would inhibit tumor growth by inducing apoptosis of GB cells. The small molecule hERG ligand doxazosin induced concentration-dependent apoptosis of human LNT-229 (EC50 = 35 µM) and U87MG (EC50 = 29 µM) GB cells, accompanied by cell cycle arrest in the G0/G1 phase. Apoptosis was associated with 64% reduction of hERG protein. HERG suppression via siRNA-mediated knock down mimicked pro-apoptotic effects of doxazosin. Antagonism of doxazosin binding by the non-apoptotic hERG ligand terazosin resulted in rescue of protein expression and in increased survival of GB cells. At the molecular level doxazosin-dependent apoptosis was characterized by activation of pro-apoptotic factors (phospho-erythropoietin-producing human hepatocellular carcinoma receptor tyrosine kinase A2, phospho-p38 mitogen-activated protein kinase, growth arrest and DNA damage inducible gene 153, cleaved caspases 9, 7, and 3), and by inactivation of anti-apoptotic poly-ADP-ribose-polymerase, respectively. In summary, this work identifies doxazosin as small molecule compound that promotes apoptosis and exerts anti-proliferative effects in human GB cells. Suppression of hERG protein is a crucial molecular event in GB cell apoptosis. Doxazosin and future derivatives are proposed as novel options for more effective GB treatment.
Clinical manifestations of COVID-19 affect many organs, including the heart. Cardiovascular disease is a dominant comorbidity and prognostic factors predicting risk for critical courses are highly needed. Moreover, immunomechanisms underlying COVID-induced myocardial damage are poorly understood. Objective To elucidate prognostic markers to identify patients at risk. Results Only patients with pericardial effusion (PE) developed a severe disease course, and those who died could be identified by a high CD8/Treg/monocyte ratio. Ten out of 19 COVID-19 patients presented with PE, 7 (78%) of these had elevated APACHE-II mortality risk-score, requiring mechanical ventilation. At admission, PE patients showed signs of systemic and cardiac inflammation in NMR and impaired cardiac function as detected by transthoracic echocardiography (TTE), whereas parameters of myocardial injury e.g. high sensitive troponin-t (hs-TnT) were not yet increased. During the course of disease, hs-TnT rose in 8 of the PE-patients above 16 ng/l, 7 had to undergo ventilatory therapy and 4 of them died. FACS at admission showed in PE patients elevated frequencies of CD3 + CD8 + T cells among all CD3+ T-cells, and lower frequencies of Tregs and CD14 + HLA − DR + -monocytes. A high CD8/Treg/monocyte ratio predicted a severe disease course in PE patients, and was associated with high serum levels of antiviral cytokines. By contrast, patients without PE and PE patients with a low CD8/Treg/monocyte ratio neither had to be intubated, nor died. Conclusions PE predicts cardiac injury in COVID-19 patients. Therefore, TTE should be performed at admission. Immunological parameters for dysfunctional antiviral immunity, such as the CD8/Treg/monocyte ratio used here, supports risk assessment by predicting poor prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.