Tests of random, alternating cuts on a ball-model of 0" in AI-Cu alloy have been run to check the kinetics at which disordering occurs in an initially ordered precipitate subject to cyclic strain. In addition, fatigue tests at low temperature (78 K) and various microscopical observations have been made on AI-Ag alloy containing GP zones to check whether a structure containing an initially disordered precipitate will cyclically soften or not. It was thus found that the 0" ball model disorders as a function of accumulated plastic strain consistently with the kinetics of cyclic softening in actual material. Further, AI-Ag alloy was found not to soften at 78 K. Both of these results support the disordering hypothesis of cyclic softening over the "dissolution" or "shearing-off" mechanisms, although other systems may be subject to these mechanisms. In spite of the low temperature at which the AI-Ag alloy was tested, small 3//3, precipitates were found to have formed in the longest lived test; however, this result did not interfere with the validity of the experiment as it did previously at room temperature. The fatigue lives at 78 K were much longer than those previously measured at room temperature although the failure mechanisms were not affected at high strain and only somewhat affected at low strain (there was increased incidence of transgranular crack nucleation and propagation).
Nano size defect formation at grain boundary during the dissolution of hydroxyapatite in water was evaluated by adding several sintering additives for sinterability enhancement. In the case of sintered pure hydroxyapatite, significant dissolution occurred after immersion in distilled water or in simulated body fluid. The dissolution initiated at the grain boundaries creating nano-size defects like small pores that afterwards grew up to micro scale by increasing immersion time. This dissolution resulted in grain separation at the surfaces and finally in fracture. The dissolution concentrated on the grains adjacent to pores rather than those in the dense region. So hydroxyapatite ceramics containing glass powders were prepared to prevent the dissolution by strengthening grain boundary. Calcium silicate and phosphate glasses were added at 0 to 10 mass% and sintered at 1200 degrees C for 2 h in air with moisture protection. Glass phase was incorporated into hydroxyapatite to act as the sintering aid followed by crystallization in order to improve the mechanical properties without reducing biocompatibility. Dissolution tests, as well as X-ray diffraction and SEM showed little decomposition of hydroxyapatite to secondary phases and the fracture toughness increased compared to pure hydroxyapatite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.